Question
Question: $\int \frac{\sin 2x}{1+\cos^4 x} dx$ is equal to...
∫1+cos4xsin2xdx is equal to

cos−1(cos2x)+c
sin−1(cos2x)+c
cot−1(cos2x)+c
none of these
(c) cot−1(cos2x)+c
Solution
The given integral is ∫1+cos4xsin2xdx.
Step 1: Simplify the integrand using trigonometric identities. We know that sin2x=2sinxcosx. So, the integral becomes: ∫1+cos4x2sinxcosxdx
Step 2: Use substitution method. Let u=cos2x. To find du, differentiate u with respect to x: dxdu=dxd(cos2x) Using the chain rule, dxd(f(x)n)=nf(x)n−1f′(x). Here, f(x)=cosx and n=2. dxdu=2(cosx)2−1⋅dxd(cosx) dxdu=2cosx(−sinx) dxdu=−2sinxcosx So, du=−2sinxcosxdx. This implies 2sinxcosxdx=−du.
Step 3: Substitute into the integral. Substitute u=cos2x and 2sinxcosxdx=−du into the integral: ∫1+u2−du =−∫1+u21du
Step 4: Integrate the standard form. The integral of 1+u21 is tan−1(u). =−tan−1(u)+C where C is the constant of integration.
Step 5: Substitute back the original variable. Substitute u=cos2x back into the result: =−tan−1(cos2x)+C
Step 6: Convert to match the options (if necessary). We know the trigonometric identity tan−1(x)+cot−1(x)=2π. From this, we can write −tan−1(x)=cot−1(x)−2π. Applying this identity to our result: −tan−1(cos2x)+C=cot−1(cos2x)−2π+C Since C is an arbitrary constant, C−2π is also an arbitrary constant. Let's denote it as C′. =cot−1(cos2x)+C′
Comparing this with the given options, option (c) matches our result.
The final answer is (c).
Explanation of the solution: The integral ∫1+cos4xsin2xdx is solved by substitution. Let u=cos2x. Then du=−2sinxcosxdx=−sin2xdx. The integral transforms to ∫1+u2−du, which integrates to −tan−1(u)+C. Substituting back u=cos2x, we get −tan−1(cos2x)+C. Using the identity −tan−1(x)=cot−1(x)−2π, the result can be written as cot−1(cos2x)+C′, where C′ is a new arbitrary constant.