Question
Question: $\int \frac{\sin 2x}{1+\cos^4 x} dx$ is equal to...
∫1+cos4xsin2xdx is equal to

A
cos−1(cos2x)+c
B
sin−1(cos2x)+c
C
cot−1(cos2x)+c
D
none of these
Answer
cot−1(cos2x)+c
Explanation
Solution
To evaluate the integral ∫1+cos4xsin2xdx, we use the substitution method.
Let t=cos2x. Then, dxdt=−2sinxcosx=−sin2x. Thus, dt=−sin2xdx.
The integral becomes:
I=∫1+t2−dt=−∫1+t21dt=−tan−1(t)+C=−tan−1(cos2x)+C
Using the identity tan−1(y)+cot−1(y)=2π, we can write −tan−1(y)=cot−1(y)−2π.
Therefore, I=cot−1(cos2x)−2π+C.
Since C is an arbitrary constant, we can absorb the term −2π into it, resulting in:
I=cot−1(cos2x)+C′
Thus, the correct answer is cot−1(cos2x)+c.