Solveeit Logo

Question

Question: $\int \frac{\sin 2x}{1+\cos^4 x} dx$ is equal to...

sin2x1+cos4xdx\int \frac{\sin 2x}{1+\cos^4 x} dx is equal to

A

cos1(cos2x)+c\cos^{-1}(\cos^2 x) + c

B

sin1(cos2x)+c\sin^{-1}(\cos^2 x) + c

C

cot1(cos2x)+c\cot^{-1}(\cos^2 x) + c

D

none of these

Answer

cot1(cos2x)+c\cot^{-1}(\cos^2 x) + c

Explanation

Solution

To evaluate the integral sin2x1+cos4xdx\int \frac{\sin 2x}{1+\cos^4 x} dx, we use the substitution method.

Let t=cos2xt = \cos^2 x. Then, dtdx=2sinxcosx=sin2x\frac{dt}{dx} = -2 \sin x \cos x = -\sin 2x. Thus, dt=sin2xdxdt = -\sin 2x \, dx.

The integral becomes:

I=dt1+t2=11+t2dt=tan1(t)+C=tan1(cos2x)+CI = \int \frac{-dt}{1+t^2} = -\int \frac{1}{1+t^2} dt = -\tan^{-1}(t) + C = -\tan^{-1}(\cos^2 x) + C

Using the identity tan1(y)+cot1(y)=π2\tan^{-1}(y) + \cot^{-1}(y) = \frac{\pi}{2}, we can write tan1(y)=cot1(y)π2-\tan^{-1}(y) = \cot^{-1}(y) - \frac{\pi}{2}.

Therefore, I=cot1(cos2x)π2+CI = \cot^{-1}(\cos^2 x) - \frac{\pi}{2} + C.

Since CC is an arbitrary constant, we can absorb the term π2-\frac{\pi}{2} into it, resulting in:

I=cot1(cos2x)+CI = \cot^{-1}(\cos^2 x) + C'

Thus, the correct answer is cot1(cos2x)+c\cot^{-1}(\cos^2 x) + c.