Solveeit Logo

Question

Question: $\int \frac{\sin 2x}{1+\cos^4 x} dx$ is equal to...

sin2x1+cos4xdx\int \frac{\sin 2x}{1+\cos^4 x} dx is equal to

A

cos1(cos2x)+c\cos^{-1}(\cos^2 x) + c

B

sin1(cos2x)+c\sin^{-1}(\cos^2 x) + c

C

cot1(cos2x)+c\cot^{-1}(\cos^2 x) + c

D

none of these

Answer

cot1(cos2x)+c\cot^{-1}(\cos^2 x) + c

Explanation

Solution

The given integral is sin2x1+cos4xdx\int \frac{\sin 2x}{1+\cos^4 x} dx.

Let's use a substitution method. Let t=cos2xt = \cos^2 x. Then dtdx=2sinxcosx=sin2x\frac{dt}{dx} = -2 \sin x \cos x = -\sin 2x. This implies dt=sin2xdxdt = -\sin 2x \, dx, or sin2xdx=dt\sin 2x \, dx = -dt.

Now substitute tt and dtdt into the integral: sin2x1+cos4xdx=dt1+t2=11+t2dt=tan1t+C\int \frac{\sin 2x}{1+\cos^4 x} dx = \int \frac{-dt}{1+t^2} = -\int \frac{1}{1+t^2} dt = -\tan^{-1} t + C.

Now, substitute back t=cos2xt = \cos^2 x: tan1(cos2x)+C-\tan^{-1}(\cos^2 x) + C.

We know the trigonometric identity relating tan1x\tan^{-1} x and cot1x\cot^{-1} x: tan1x+cot1x=π2\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}. From this, we can write tan1x=π2cot1x\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x. Applying this to our result: tan1(cos2x)+C=(π2cot1(cos2x))+C=π2+cot1(cos2x)+C-\tan^{-1}(\cos^2 x) + C = - \left( \frac{\pi}{2} - \cot^{-1}(\cos^2 x) \right) + C = -\frac{\pi}{2} + \cot^{-1}(\cos^2 x) + C. Since CC is an arbitrary constant of integration, and π2-\frac{\pi}{2} is also a constant, we can combine them into a new arbitrary constant, say CC'. So, the result is: cot1(cos2x)+C\cot^{-1}(\cos^2 x) + C'.