Question
Question: $\int \frac{\sin 2x}{1+\cos^4 x} dx$ is equal to...
∫1+cos4xsin2xdx is equal to

cos−1(cos2x)+c
sin−1(cos2x)+c
cot−1(cos2x)+c
none of these
cot−1(cos2x)+c
Solution
The given integral is ∫1+cos4xsin2xdx.
Let's use a substitution method. Let t=cos2x. Then dxdt=−2sinxcosx=−sin2x. This implies dt=−sin2xdx, or sin2xdx=−dt.
Now substitute t and dt into the integral: ∫1+cos4xsin2xdx=∫1+t2−dt=−∫1+t21dt=−tan−1t+C.
Now, substitute back t=cos2x: −tan−1(cos2x)+C.
We know the trigonometric identity relating tan−1x and cot−1x: tan−1x+cot−1x=2π. From this, we can write tan−1x=2π−cot−1x. Applying this to our result: −tan−1(cos2x)+C=−(2π−cot−1(cos2x))+C=−2π+cot−1(cos2x)+C. Since C is an arbitrary constant of integration, and −2π is also a constant, we can combine them into a new arbitrary constant, say C′. So, the result is: cot−1(cos2x)+C′.