Question
Question: $\int \frac{sin 2x}{1+cos^4 x} dx$ is equal to...
∫1+cos4xsin2xdx is equal to

cos−1(cos2x)+c
sin−1(cos2x)+c
cot−1(cos2x)+c
none of these
cot−1(cos2x)+C′
Solution
The problem asks us to evaluate the integral ∫1+cos4xsin2xdx.
Let the given integral be I. I=∫1+cos4xsin2xdx
We can use the substitution method to solve this integral. Let u=cos2x. To find du, we differentiate u with respect to x: dxdu=dxd(cos2x) Using the chain rule, dxd(f(x)n)=nf(x)n−1f′(x): dxdu=2cosx⋅(−sinx) dxdu=−2sinxcosx We know that sin2x=2sinxcosx. So, dxdu=−sin2x. This implies du=−sin2xdx. Therefore, sin2xdx=−du.
Now, substitute u=cos2x and sin2xdx=−du into the integral: I=∫1+u2−du I=−∫1+u21du
We know the standard integral formula: ∫1+x21dx=tan−1x+C. Applying this formula: I=−tan−1u+C
Now, substitute back u=cos2x: I=−tan−1(cos2x)+C
We need to check if this result matches any of the given options. We know the trigonometric identity: tan−1x+cot−1x=2π. From this identity, we can write −tan−1x=cot−1x−2π. Applying this to our result: I=cot−1(cos2x)−2π+C Since C is an arbitrary constant of integration, the term −2π+C can be represented by a new arbitrary constant, say C′. I=cot−1(cos2x)+C′
Comparing this with the given options: (a) cos−1(cos2x)+c (b) sin−1(cos2x)+c (c) cot−1(cos2x)+c (d) none of these
Our result matches option (c).