Solveeit Logo

Question

Question: $\int \frac{sin 2x}{1+cos^4 x} dx$ is equal to...

sin2x1+cos4xdx\int \frac{sin 2x}{1+cos^4 x} dx is equal to

A

cos1(cos2x)+ccos^{-1}(cos^2x) + c

B

sin1(cos2x)+csin^{-1}(cos^2x) + c

C

cot1(cos2x)+ccot^{-1}(cos^2x) + c

D

none of these

Answer

cot1(cos2x)+C\cot^{-1} (\cos^2 x) + C'

Explanation

Solution

The problem asks us to evaluate the integral sin2x1+cos4xdx\int \frac{\sin 2x}{1+\cos^4 x} dx.

Let the given integral be II. I=sin2x1+cos4xdxI = \int \frac{\sin 2x}{1+\cos^4 x} dx

We can use the substitution method to solve this integral. Let u=cos2xu = \cos^2 x. To find dudu, we differentiate uu with respect to xx: dudx=ddx(cos2x)\frac{du}{dx} = \frac{d}{dx}(\cos^2 x) Using the chain rule, ddx(f(x)n)=nf(x)n1f(x)\frac{d}{dx}(f(x)^n) = n f(x)^{n-1} f'(x): dudx=2cosx(sinx)\frac{du}{dx} = 2 \cos x \cdot (-\sin x) dudx=2sinxcosx\frac{du}{dx} = -2 \sin x \cos x We know that sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x. So, dudx=sin2x\frac{du}{dx} = -\sin 2x. This implies du=sin2xdxdu = -\sin 2x dx. Therefore, sin2xdx=du\sin 2x dx = -du.

Now, substitute u=cos2xu = \cos^2 x and sin2xdx=du\sin 2x dx = -du into the integral: I=du1+u2I = \int \frac{-du}{1+u^2} I=11+u2duI = - \int \frac{1}{1+u^2} du

We know the standard integral formula: 11+x2dx=tan1x+C\int \frac{1}{1+x^2} dx = \tan^{-1} x + C. Applying this formula: I=tan1u+CI = -\tan^{-1} u + C

Now, substitute back u=cos2xu = \cos^2 x: I=tan1(cos2x)+CI = -\tan^{-1} (\cos^2 x) + C

We need to check if this result matches any of the given options. We know the trigonometric identity: tan1x+cot1x=π2\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}. From this identity, we can write tan1x=cot1xπ2-\tan^{-1} x = \cot^{-1} x - \frac{\pi}{2}. Applying this to our result: I=cot1(cos2x)π2+CI = \cot^{-1} (\cos^2 x) - \frac{\pi}{2} + C Since CC is an arbitrary constant of integration, the term π2+C-\frac{\pi}{2} + C can be represented by a new arbitrary constant, say CC'. I=cot1(cos2x)+CI = \cot^{-1} (\cos^2 x) + C'

Comparing this with the given options: (a) cos1(cos2x)+c\cos^{-1}(\cos^2x) + c (b) sin1(cos2x)+c\sin^{-1}(\cos^2x) + c (c) cot1(cos2x)+c\cot^{-1}(\cos^2x) + c (d) none of these

Our result matches option (c).