Solveeit Logo

Question

Question: If $\overline{a} = i + 2j + 3k$, $b = -1 + 2j + k$, $c = 3i + j$ and $a + \lambda b$ is perpendicula...

If a=i+2j+3k\overline{a} = i + 2j + 3k, b=1+2j+kb = -1 + 2j + k, c=3i+jc = 3i + j and a+λba + \lambda b is perpendicular to cc, then λ=\lambda = \dots

A

5

B

2

C

3

D

4

Answer

5

Explanation

Solution

Given vectors:

a=i+2j+3k,b=i+2j+k,c=3i+j\mathbf{a} = i + 2j + 3k,\quad \mathbf{b} = -i + 2j + k,\quad \mathbf{c} = 3i + j

The vector a+λb\mathbf{a} + \lambda \mathbf{b} is perpendicular to c\mathbf{c} if

(a+λb)c=0.(\mathbf{a} + \lambda \mathbf{b}) \cdot \mathbf{c} = 0.

First, calculate the dot product:

a+λb=(1λ,    2+2λ,    3+λ).\mathbf{a} + \lambda \mathbf{b} = (1-\lambda,\;\;2+2\lambda,\;\;3+\lambda).

Since c=(3,1,0)\mathbf{c} = (3,1,0), we have:

(1λ)3+(2+2λ)1+(3+λ)0=0.(1-\lambda) \cdot 3 + (2+2\lambda) \cdot 1 + (3+\lambda) \cdot 0 = 0.

Simplify:

3(1λ)+2+2λ=33λ+2+2λ=5λ=0.3(1-\lambda) + 2 + 2\lambda = 3 - 3\lambda + 2 + 2\lambda = 5 - \lambda = 0.

Thus,

λ=5.\lambda = 5.