Solveeit Logo

Question

Question: For the given reaction, $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ the number of moles at equilibrium w...

For the given reaction, PCl5PCl3+Cl2PCl_5 \rightleftharpoons PCl_3 + Cl_2 the number of moles at equilibrium was found to be 2, 6 & 4 respectively at 10 atm pressure. Find the new equilibrium moles of PCl5PCl_5, if it is restablished at an equilibrium pressure 50 atm.

Answer

4

Explanation

Solution

  1. Calculate Equilibrium Constant KpK_p: At 10 atm: nPCl5=2n_{PCl_5} = 2, nPCl3=6n_{PCl_3} = 6, nCl2=4n_{Cl_2} = 4. Total moles ntotal=2+6+4=12n_{total} = 2 + 6 + 4 = 12. Partial pressures: PPCl5=212×10=106P_{PCl_5} = \frac{2}{12} \times 10 = \frac{10}{6} atm PPCl3=612×10=5P_{PCl_3} = \frac{6}{12} \times 10 = 5 atm PCl2=412×10=103P_{Cl_2} = \frac{4}{12} \times 10 = \frac{10}{3} atm Kp=PPCl3×PCl2PPCl5=5×103106=10K_p = \frac{P_{PCl_3} \times P_{Cl_2}}{P_{PCl_5}} = \frac{5 \times \frac{10}{3}}{\frac{10}{6}} = 10 atm.

  2. Apply Le Chatelier's Principle: Increasing pressure from 10 atm to 50 atm shifts equilibrium to the side with fewer moles of gas. Here, PCl5PCl_5 (1 mole) is favored over PCl3+Cl2PCl_3 + Cl_2 (2 moles).

  3. Calculate New Equilibrium Moles: Let 'y' moles of PCl3PCl_3 and Cl2Cl_2 react to form PCl5PCl_5. New moles: nPCl5=2+yn'_{PCl_5} = 2+y, nPCl3=6yn'_{PCl_3} = 6-y, nCl2=4yn'_{Cl_2} = 4-y. New total moles ntotal=(2+y)+(6y)+(4y)=12yn'_{total} = (2+y) + (6-y) + (4-y) = 12-y. Partial pressures at 50 atm: PPCl5=2+y12y×50P'_{PCl_5} = \frac{2+y}{12-y} \times 50 PPCl3=6y12y×50P'_{PCl_3} = \frac{6-y}{12-y} \times 50 PCl2=4y12y×50P'_{Cl_2} = \frac{4-y}{12-y} \times 50

  4. Solve for y: Using Kp=10K_p = 10 atm: 10=(6y12y×50)×(4y12y×50)(2+y12y×50)10 = \frac{\left(\frac{6-y}{12-y} \times 50\right) \times \left(\frac{4-y}{12-y} \times 50\right)}{\left(\frac{2+y}{12-y} \times 50\right)} 10=(6y)(4y)(12y)(2+y)×5010 = \frac{(6-y)(4-y)}{(12-y)(2+y)} \times 50 15=y210y+2424+10yy2\frac{1}{5} = \frac{y^2 - 10y + 24}{24 + 10y - y^2} 24+10yy2=5(y210y+24)24 + 10y - y^2 = 5(y^2 - 10y + 24) 6y260y+96=06y^2 - 60y + 96 = 0 y210y+16=0y^2 - 10y + 16 = 0 (y2)(y8)=0(y-2)(y-8) = 0. Since yy cannot be greater than the initial moles of reactants (6 and 4), y=2y=2 is the valid solution.

  5. Find New Equilibrium Moles of PCl5PCl_5: nPCl5=2+y=2+2=4n'_{PCl_5} = 2 + y = 2 + 2 = 4 moles.