Solveeit Logo

Question

Question: Locus of point of intersection of normals drawn at end points of focal chord of a parabola $y^2 = 4a...

Locus of point of intersection of normals drawn at end points of focal chord of a parabola y2=4axy^2 = 4ax is :

A

y^2 = a(x-a)

B

y^2 = a(x-2a)

C

y^2 = a(x-3a)

D

y^2 = a(x-4a)

Answer

y^2 = a(x-3a)

Explanation

Solution

The equation of the normal to the parabola y2=4axy^2 = 4ax at a point (at2,2at)(at^2, 2at) is y=tx+2at+at3y = -tx + 2at + at^3. Let the normals at the endpoints of a focal chord, with parameters t1t_1 and t2t_2, intersect at (h,k)(h, k). Then t1t_1 and t2t_2 are roots of the cubic equation at3+(2ah)t+k=0at^3 + (2a-h)t + k = 0. For a focal chord, t1t2=1t_1t_2 = -1. Let the third root be t3t_3. From Vieta's formulas, t1+t2+t3=0t_1+t_2+t_3 = 0, t1t2+t2t3+t3t1=2ahat_1t_2+t_2t_3+t_3t_1 = \frac{2a-h}{a}, and t1t2t3=kat_1t_2t_3 = -\frac{k}{a}. Substituting t1t2=1t_1t_2 = -1, we get t3=ka-t_3 = -\frac{k}{a}, so t3=kat_3 = \frac{k}{a}. Also, 1+t3(t1+t2)=2aha-1 + t_3(t_1+t_2) = \frac{2a-h}{a}. Since t1+t2=t3t_1+t_2 = -t_3, we have 1t32=2aha-1 - t_3^2 = \frac{2a-h}{a}. Substituting t3=kat_3 = \frac{k}{a} gives 1(ka)2=2aha-1 - (\frac{k}{a})^2 = \frac{2a-h}{a}. Multiplying by aa, we get ak2a=2ah-a - \frac{k^2}{a} = 2a-h, which simplifies to h=3a+k2ah = 3a + \frac{k^2}{a}, or k2=a(h3a)k^2 = a(h-3a). Thus, the locus is y2=a(x3a)y^2 = a(x-3a).