Solveeit Logo

Question

Question: $((\sqrt{2}-1)cosec \theta - sec \theta)cos3\theta$ at $\theta = \frac{\pi}{24}$ is-...

((21)cosecθsecθ)cos3θ((\sqrt{2}-1)cosec \theta - sec \theta)cos3\theta at θ=π24\theta = \frac{\pi}{24} is-

A

0

B

-2

C

1

D

3\sqrt{3}

Answer

The correct answer is 2, which is not present in the options. There might be an error in the question or options.

Explanation

Solution

To evaluate the expression ((21)cosecθsecθ)cos3θ((\sqrt{2}-1)cosec \theta - sec \theta)cos3\theta at θ=π24\theta = \frac{\pi}{24}, we proceed as follows:

  1. Substitute θ=π24\theta = \frac{\pi}{24} into the expression.
  2. Simplify cos(3θ)=cos(3π24)=cos(π8)cos(3\theta) = cos(\frac{3\pi}{24}) = cos(\frac{\pi}{8}).
  3. Rewrite cosecθcosec \theta as 1sinθ\frac{1}{\sin \theta} and secθsec \theta as 1cosθ\frac{1}{\cos \theta}.
  4. Combine the terms inside the parenthesis: (21)cosθsinθsinθcosθ\frac{(\sqrt{2}-1)\cos \theta - \sin \theta}{\sin \theta \cos \theta}.
  5. Recognize that 21=tan(π8)\sqrt{2}-1 = \tan(\frac{\pi}{8}).
  6. Substitute tan(π8)\tan(\frac{\pi}{8}) into the numerator and simplify using trigonometric identities, specifically the sine subtraction formula.
  7. Simplify the denominator using the double angle identity for sine.
  8. Cancel out common terms to arrive at the final result.

The step-by-step solution is as follows:

Given expression: ((21)cosecθsecθ)cos3θ((\sqrt{2}-1)cosec \theta - sec \theta)cos3\theta

Substitute θ=π24\theta = \frac{\pi}{24}:

((21)cosecπ24secπ24)cos(3π24)=((21)cosecπ24secπ24)cos(π8)((\sqrt{2}-1)cosec \frac{\pi}{24} - sec \frac{\pi}{24})cos(3 \cdot \frac{\pi}{24}) = ((\sqrt{2}-1)cosec \frac{\pi}{24} - sec \frac{\pi}{24})cos(\frac{\pi}{8})

Rewrite in terms of sine and cosine:

(21sinπ241cosπ24)cos(π8)\left( \frac{\sqrt{2}-1}{\sin \frac{\pi}{24}} - \frac{1}{\cos \frac{\pi}{24}} \right) \cos(\frac{\pi}{8})

Combine terms:

(21)cosπ24sinπ24sinπ24cosπ24cos(π8)\frac{(\sqrt{2}-1)\cos \frac{\pi}{24} - \sin \frac{\pi}{24}}{\sin \frac{\pi}{24} \cos \frac{\pi}{24}} \cos(\frac{\pi}{8})

Use 21=tan(π8)\sqrt{2}-1 = \tan(\frac{\pi}{8}):

tan(π8)cosπ24sinπ24sinπ24cosπ24cos(π8)\frac{\tan(\frac{\pi}{8})\cos \frac{\pi}{24} - \sin \frac{\pi}{24}}{\sin \frac{\pi}{24} \cos \frac{\pi}{24}} \cos(\frac{\pi}{8})

Rewrite tan(π8)\tan(\frac{\pi}{8}) as sin(π8)cos(π8)\frac{\sin(\frac{\pi}{8})}{\cos(\frac{\pi}{8})}:

sin(π8)cos(π8)cosπ24sinπ24sinπ24cosπ24cos(π8)\frac{\frac{\sin(\frac{\pi}{8})}{\cos(\frac{\pi}{8})}\cos \frac{\pi}{24} - \sin \frac{\pi}{24}}{\sin \frac{\pi}{24} \cos \frac{\pi}{24}} \cos(\frac{\pi}{8})

Simplify the numerator:

sin(π8)cosπ24cos(π8)sinπ24cos(π8)1sinπ24cosπ24cos(π8)\frac{\sin(\frac{\pi}{8})\cos \frac{\pi}{24} - \cos(\frac{\pi}{8})\sin \frac{\pi}{24}}{\cos(\frac{\pi}{8})} \cdot \frac{1}{\sin \frac{\pi}{24} \cos \frac{\pi}{24}} \cos(\frac{\pi}{8})

Using the sine subtraction formula sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B:

sin(π8π24)cos(π8)1sinπ24cosπ24cos(π8)\frac{\sin(\frac{\pi}{8} - \frac{\pi}{24})}{\cos(\frac{\pi}{8})} \cdot \frac{1}{\sin \frac{\pi}{24} \cos \frac{\pi}{24}} \cos(\frac{\pi}{8})

Simplify the angle: π8π24=3ππ24=2π24=π12\frac{\pi}{8} - \frac{\pi}{24} = \frac{3\pi - \pi}{24} = \frac{2\pi}{24} = \frac{\pi}{12}:

sin(π12)cos(π8)1sinπ24cosπ24cos(π8)\frac{\sin(\frac{\pi}{12})}{\cos(\frac{\pi}{8})} \cdot \frac{1}{\sin \frac{\pi}{24} \cos \frac{\pi}{24}} \cos(\frac{\pi}{8})

Using the double angle identity sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x, we have sinxcosx=12sin(2x)\sin x \cos x = \frac{1}{2}\sin(2x):

sin(π12)cos(π8)112sin(π12)cos(π8)\frac{\sin(\frac{\pi}{12})}{\cos(\frac{\pi}{8})} \cdot \frac{1}{\frac{1}{2}\sin(\frac{\pi}{12})} \cos(\frac{\pi}{8})

Simplify:

sin(π12)cos(π8)2sin(π12)cos(π8)\frac{\sin(\frac{\pi}{12})}{\cos(\frac{\pi}{8})} \cdot \frac{2}{\sin(\frac{\pi}{12})} \cdot \cos(\frac{\pi}{8})

Cancel common terms:

22

Therefore, the value of the expression is 2, which is not among the given options. There may be an error in the question or the options provided.