Solveeit Logo

Question

Question: $\lim_{x \to \infty} \left[ \frac{sinx}{x} \right]$...

limx[sinxx]\lim_{x \to \infty} \left[ \frac{sinx}{x} \right]

Answer

Does not exist

Explanation

Solution

We are asked to find the limit limx[sinxx]\lim_{x \to \infty} \left[ \frac{sinx}{x} \right], where [y][y] denotes the greatest integer function of yy.

First, let's analyze the behavior of the function inside the greatest integer function, sinxx\frac{sinx}{x}, as xx \to \infty. We know that the sine function is bounded, i.e., 1sinx1-1 \le sinx \le 1 for all real xx. For x>0x > 0, we can divide the inequality by xx: 1xsinxx1x\frac{-1}{x} \le \frac{sinx}{x} \le \frac{1}{x}.

Now, let's evaluate the limits of the lower and upper bounds as xx \to \infty: limx1x=0\lim_{x \to \infty} \frac{-1}{x} = 0 limx1x=0\lim_{x \to \infty} \frac{1}{x} = 0

By the Squeeze Theorem, since sinxx\frac{sinx}{x} is bounded between 1x\frac{-1}{x} and 1x\frac{1}{x}, and both bounds converge to 0 as xx \to \infty, the function sinxx\frac{sinx}{x} also converges to 0: limxsinxx=0\lim_{x \to \infty} \frac{sinx}{x} = 0.

Now, we need to evaluate the limit of the greatest integer function of sinxx\frac{sinx}{x} as xx \to \infty. Since limxsinxx=0\lim_{x \to \infty} \frac{sinx}{x} = 0, for sufficiently large values of xx, the value of sinxx\frac{sinx}{x} will be very close to 0.

Let's consider the values of sinxx\frac{sinx}{x} for large xx. For x>1x > 1, we have 1/xsinxx1/x-1/x \le \frac{sinx}{x} \le 1/x. As xx \to \infty, the interval [1/x,1/x][-1/x, 1/x] shrinks towards 0.

For very large xx, the value of sinxx\frac{sinx}{x} is a number close to 0. This number can be positive or negative depending on the sign of sinxsinx. The sign of sinxsinx alternates as xx increases. sinx>0sinx > 0 for x(2nπ,(2n+1)π)x \in (2n\pi, (2n+1)\pi) and sinx<0sinx < 0 for x((2n+1)π,(2n+2)π)x \in ((2n+1)\pi, (2n+2)\pi) for integer nn.

Consider large values of xx such that sinx>0sinx > 0. For these values, sinxx\frac{sinx}{x} is a small positive number. For sufficiently large xx, 0<sinxx<10 < \frac{sinx}{x} < 1. The greatest integer of such a number is 0. For example, if xx is large and sinx>0sinx > 0, sinxx\frac{sinx}{x} could be 0.001, 0.0001, etc. The greatest integer [0.001]=0[0.001] = 0, [0.0001]=0[0.0001] = 0.

Consider large values of xx such that sinx<0sinx < 0. For these values, sinxx\frac{sinx}{x} is a small negative number. For sufficiently large xx, 1<sinxx<0-1 < \frac{sinx}{x} < 0. The greatest integer of such a number is -1. For example, if xx is large and sinx<0sinx < 0, sinxx\frac{sinx}{x} could be -0.001, -0.0001, etc. The greatest integer [0.001]=1[-0.001] = -1, [0.0001]=1[-0.0001] = -1.

As xx \to \infty, xx passes through intervals where sinx>0sinx > 0 and intervals where sinx<0sinx < 0. In intervals where sinx>0sinx > 0, for large xx, [sinxx]=0\left[ \frac{sinx}{x} \right] = 0. In intervals where sinx<0sinx < 0, for large xx, [sinxx]=1\left[ \frac{sinx}{x} \right] = -1.

The function [sinxx]\left[ \frac{sinx}{x} \right] oscillates between the values 0 and -1 for arbitrarily large values of xx. For a limit to exist as xx \to \infty, the function must approach a single value. Since [sinxx]\left[ \frac{sinx}{x} \right] takes on two different values (0 and -1) infinitely often as xx \to \infty, the limit does not exist.

For example, consider the sequence xn=2nπ+π/2x_n = 2n\pi + \pi/2. As nn \to \infty, xnx_n \to \infty. sin(xn)xn=sin(2nπ+π/2)2nπ+π/2=sin(π/2)2nπ+π/2=12nπ+π/2\frac{sin(x_n)}{x_n} = \frac{sin(2n\pi + \pi/2)}{2n\pi + \pi/2} = \frac{sin(\pi/2)}{2n\pi + \pi/2} = \frac{1}{2n\pi + \pi/2}. As nn \to \infty, 12nπ+π/20\frac{1}{2n\pi + \pi/2} \to 0. For large nn, 0<12nπ+π/2<10 < \frac{1}{2n\pi + \pi/2} < 1. So, limn[sin(xn)xn]=limn[12nπ+π/2]=[0]=0\lim_{n \to \infty} \left[ \frac{sin(x_n)}{x_n} \right] = \lim_{n \to \infty} \left[ \frac{1}{2n\pi + \pi/2} \right] = [0] = 0.

Consider the sequence yn=2nπ+3π/2y_n = 2n\pi + 3\pi/2. As nn \to \infty, yny_n \to \infty. sin(yn)yn=sin(2nπ+3π/2)2nπ+3π/2=sin(3π/2)2nπ+3π/2=12nπ+3π/2\frac{sin(y_n)}{y_n} = \frac{sin(2n\pi + 3\pi/2)}{2n\pi + 3\pi/2} = \frac{sin(3\pi/2)}{2n\pi + 3\pi/2} = \frac{-1}{2n\pi + 3\pi/2}. As nn \to \infty, 12nπ+3π/20\frac{-1}{2n\pi + 3\pi/2} \to 0. For large nn, 1<12nπ+3π/2<0-1 < \frac{-1}{2n\pi + 3\pi/2} < 0. So, limn[sin(yn)yn]=limn[12nπ+3π/2]=[1]=1\lim_{n \to \infty} \left[ \frac{sin(y_n)}{y_n} \right] = \lim_{n \to \infty} \left[ \frac{-1}{2n\pi + 3\pi/2} \right] = [-1] = -1.

Since we found two sequences xnx_n and yny_n both tending to infinity, but the limit of the function along these sequences is different (0 and -1), the limit limx[sinxx]\lim_{x \to \infty} \left[ \frac{sinx}{x} \right] does not exist.