Solveeit Logo

Question

Question: If we reduce $3x + 3y + 7 = 0$ to the form $x \cos \alpha + y \sin \alpha = p$, then find the value ...

If we reduce 3x+3y+7=03x + 3y + 7 = 0 to the form xcosα+ysinα=px \cos \alpha + y \sin \alpha = p, then find the value of pp.

Answer

726\frac{7\sqrt{2}}{6}

Explanation

Solution

The given line is 3x+3y+7=03x + 3y + 7 = 0. To convert to the form xcosα+ysinα=px \cos \alpha + y \sin \alpha = p, we first move the constant term to the right side: 3x+3y=73x + 3y = -7. Since pp must be non-negative, we multiply by 1-1 to make the right side positive: 3x3y=7-3x - 3y = 7. Now, we divide by (3)2+(3)2=9+9=18=32\sqrt{(-3)^2 + (-3)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}. The equation becomes 3x323y32=732\frac{-3x}{3\sqrt{2}} - \frac{3y}{3\sqrt{2}} = \frac{7}{3\sqrt{2}}. This simplifies to 12x12y=732-\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y = \frac{7}{3\sqrt{2}}. Thus, p=732p = \frac{7}{3\sqrt{2}}. Rationalizing the denominator, p=732×22=726p = \frac{7}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{7\sqrt{2}}{6}.