Solveeit Logo

Question

Question: If the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are linearly independent satisfying $(\...

If the vectors a\overrightarrow{a} and b\overrightarrow{b} are linearly independent satisfying (3tanθ+1)a+(3secθ2)b=0(\sqrt{3} \tan \theta + 1) \overrightarrow{a} + (\sqrt{3} \sec \theta - 2) \overrightarrow{b} = 0, then the most general values of θ\theta are

A

nππ6,nZn\pi - \frac{\pi}{6}, n \in Z

B

2nπ±11π6,nZ2n\pi \pm \frac{11\pi}{6}, n \in Z

C

nπ±π6,nZn\pi \pm \frac{\pi}{6}, n \in Z

D

2nπ+11π6,nZ2n\pi + \frac{11\pi}{6}, n \in Z

Answer

2nπ+11π6,nZ2n\pi + \frac{11\pi}{6}, n \in Z

Explanation

Solution

The given equation is (3tanθ+1)a+(3secθ2)b=0(\sqrt{3} \tan \theta + 1) \overrightarrow{a} + (\sqrt{3} \sec \theta - 2) \overrightarrow{b} = 0.

Since the vectors a\overrightarrow{a} and b\overrightarrow{b} are linearly independent, the coefficients of a\overrightarrow{a} and b\overrightarrow{b} must both be zero. This gives us two equations:

  1. 3tanθ+1=0\sqrt{3} \tan \theta + 1 = 0
  2. 3secθ2=0\sqrt{3} \sec \theta - 2 = 0

From equation (1):

3tanθ=1\sqrt{3} \tan \theta = -1

tanθ=13\tan \theta = -\frac{1}{\sqrt{3}}

The general solution for tanθ=13\tan \theta = -\frac{1}{\sqrt{3}} is θ=nππ6\theta = n\pi - \frac{\pi}{6}, where nZn \in Z.

From equation (2):

3secθ=2\sqrt{3} \sec \theta = 2

secθ=23\sec \theta = \frac{2}{\sqrt{3}}

Since secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}, we have cosθ=32\cos \theta = \frac{\sqrt{3}}{2}.

The general solution for cosθ=32\cos \theta = \frac{\sqrt{3}}{2} is θ=2mπ±π6\theta = 2m\pi \pm \frac{\pi}{6}, where mZm \in Z.

For θ\theta to satisfy both equations, the values of θ\theta must be common to both general solutions.

The first set of solutions is θ=nππ6\theta = n\pi - \frac{\pi}{6}, nZn \in Z.

The second set of solutions is θ=2mπ±π6\theta = 2m\pi \pm \frac{\pi}{6}, mZm \in Z.

Let's check which values from the first set are also in the second set.

Case 1: nn is even. Let n=2kn = 2k for some integer kk.

Then θ=2kππ6\theta = 2k\pi - \frac{\pi}{6}.

This is of the form 2mππ62m\pi - \frac{\pi}{6} with m=km=k, which is included in the second set of solutions (2mπ±π62m\pi \pm \frac{\pi}{6} with the negative sign).

Let's verify if this satisfies the condition cosθ=32\cos \theta = \frac{\sqrt{3}}{2}.

cos(2kππ6)=cos(π6)=cos(π6)=32\cos(2k\pi - \frac{\pi}{6}) = \cos(-\frac{\pi}{6}) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}. This is satisfied.

Let's verify if this satisfies the condition tanθ=13\tan \theta = -\frac{1}{\sqrt{3}}.

tan(2kππ6)=tan(π6)=tan(π6)=13\tan(2k\pi - \frac{\pi}{6}) = \tan(-\frac{\pi}{6}) = -\tan(\frac{\pi}{6}) = -\frac{1}{\sqrt{3}}. This is satisfied.

So, θ=2kππ6\theta = 2k\pi - \frac{\pi}{6} for kZk \in Z is a valid set of solutions.

Case 2: nn is odd. Let n=2k+1n = 2k+1 for some integer kk.

Then θ=(2k+1)ππ6=2kπ+ππ6=2kπ+5π6\theta = (2k+1)\pi - \frac{\pi}{6} = 2k\pi + \pi - \frac{\pi}{6} = 2k\pi + \frac{5\pi}{6}.

Let's check if this satisfies the condition cosθ=32\cos \theta = \frac{\sqrt{3}}{2}.

cos(2kπ+5π6)=cos(5π6)=cos(ππ6)=cos(π6)=32\cos(2k\pi + \frac{5\pi}{6}) = \cos(\frac{5\pi}{6}) = \cos(\pi - \frac{\pi}{6}) = -\cos(\frac{\pi}{6}) = -\frac{\sqrt{3}}{2}.

This is not equal to 32\frac{\sqrt{3}}{2}. So, values of θ\theta where nn is odd in the first set of solutions are not valid.

Thus, the common solutions are θ=2kππ6\theta = 2k\pi - \frac{\pi}{6} for kZk \in Z.

We need to match this form with the given options.

Let's rewrite the solution:

θ=2kππ6=2kπ+(2ππ6)2π=(2k+2)π+(11π62π)+2π2π=(2k+2)ππ6\theta = 2k\pi - \frac{\pi}{6} = 2k\pi + (2\pi - \frac{\pi}{6}) - 2\pi = (2k+2)\pi + (\frac{11\pi}{6} - 2\pi) + 2\pi - 2\pi = (2k+2)\pi - \frac{\pi}{6}.

Alternatively, θ=2kππ6=2kπ+11π62π=(2k2)π+11π6\theta = 2k\pi - \frac{\pi}{6} = 2k\pi + \frac{11\pi}{6} - 2\pi = (2k-2)\pi + \frac{11\pi}{6}.

Let m=k1m = k-1. As kk takes all integer values, mm also takes all integer values.

So the solution set is θ=2mπ+11π6\theta = 2m\pi + \frac{11\pi}{6}, where mZm \in Z.

This matches option (4).

Let's check option (4): 2nπ+11π6,nZ2n\pi + \frac{11\pi}{6}, n \in Z.

θ=2nπ+11π6\theta = 2n\pi + \frac{11\pi}{6}.

tanθ=tan(2nπ+11π6)=tan(11π6)=tan(2ππ6)=tan(π6)=13\tan \theta = \tan(2n\pi + \frac{11\pi}{6}) = \tan(\frac{11\pi}{6}) = \tan(2\pi - \frac{\pi}{6}) = -\tan(\frac{\pi}{6}) = -\frac{1}{\sqrt{3}}. This is satisfied.

cosθ=cos(2nπ+11π6)=cos(11π6)=cos(2ππ6)=cos(π6)=32\cos \theta = \cos(2n\pi + \frac{11\pi}{6}) = \cos(\frac{11\pi}{6}) = \cos(2\pi - \frac{\pi}{6}) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}. This is satisfied.

So, option (4) represents the correct general solution.