Solveeit Logo

Question

Question: If p and q are solutions of the equation $5^{(\log_5^2 x)} + x^{\log_5x} = 1250$ then $\log_q p$ has...

If p and q are solutions of the equation 5(log52x)+xlog5x=12505^{(\log_5^2 x)} + x^{\log_5x} = 1250 then logqp\log_q p has the value equal to-

A

0

B

1

C

-1

D

-2

Answer

The solutions of the equation are p=25p=25 and q=125q=\frac{1}{25} (or vice versa). We need to find the value of logqp\log_q p. Let p=25p = 25 and q=125q = \frac{1}{25}. Then logqp=log12525\log_q p = \log_{\frac{1}{25}} 25. Let k=log12525k = \log_{\frac{1}{25}} 25. By the definition of logarithm, this means (125)k=25(\frac{1}{25})^k = 25. We can rewrite 125\frac{1}{25} as 25125^{-1}. So, (251)k=251(25^{-1})^k = 25^1, which implies 25k=25125^{-k} = 25^1. Equating the exponents, we get k=1-k = 1, so k=1k = -1. If we choose p=125p = \frac{1}{25} and q=25q = 25, then logqp=log25125=1\log_q p = \log_{25} \frac{1}{25} = -1. Therefore, logqp=1\log_q p = -1.

Explanation

Solution

Let y=log5xy = \log_5 x. Then x=5yx = 5^y. The given equation is 5(log52x)+xlog5x=12505^{(\log_5^2 x)} + x^{\log_5x} = 1250. The term 5(log52x)5^{(\log_5^2 x)} can be written as 5(log5x)2=5y25^{(\log_5 x)^2} = 5^{y^2}. The term xlog5xx^{\log_5 x} can be written as (5y)y=5y2(5^y)^y = 5^{y^2}. So the equation becomes 5y2+5y2=12505^{y^2} + 5^{y^2} = 1250. 25y2=12502 \cdot 5^{y^2} = 1250 5y2=6255^{y^2} = 625 5y2=545^{y^2} = 5^4 y2=4y^2 = 4 y=2y = 2 or y=2y = -2.

Case 1: y=log5x=2    x=52=25y = \log_5 x = 2 \implies x = 5^2 = 25. Case 2: y=log5x=2    x=52=125y = \log_5 x = -2 \implies x = 5^{-2} = \frac{1}{25}.

The solutions are p=25p=25 and q=125q=\frac{1}{25} (or vice versa).

We need to find logqp\log_q p. If p=25p=25 and q=125q=\frac{1}{25}, then logqp=log12525\log_q p = \log_{\frac{1}{25}} 25. Let k=log12525k = \log_{\frac{1}{25}} 25. (125)k=25(\frac{1}{25})^k = 25 (251)k=251(25^{-1})^k = 25^1 25k=25125^{-k} = 25^1 k=1-k = 1 k=1k = -1.

If p=125p=\frac{1}{25} and q=25q=25, then logqp=log25125\log_q p = \log_{25} \frac{1}{25}. Let m=log25125m = \log_{25} \frac{1}{25}. 25m=12525^m = \frac{1}{25} 25m=25125^m = 25^{-1} m=1m = -1.

In both cases, logqp=1\log_q p = -1.