Solveeit Logo

Question

Question: 16. If f(x) = (1 + x) (1 + x²) (1 + x⁴) (1 + x²), then f'(1) =...

  1. If f(x) = (1 + x) (1 + x²) (1 + x⁴) (1 + x²), then f'(1) =
A

60

B

240

C

80

D

120

Answer

120

Explanation

Solution

We interpret the intended product as

f(x)=(1+x)(1+x2)(1+x4)(1+x8)f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8)

which is a standard factorization giving

f(x)=1+x+x2++x15.f(x)=1+x+x^2+\cdots+x^{15}\,.

Step 1: Note that at x=1x=1 we have

f(1)=(2)(2)(2)(2)=16.f(1)= (2)(2)(2)(2)=16\,.

Step 2: Logarithmic differentiation
Take logarithm:

ln(f(x))=ln(1+x)+ln(1+x2)+ln(1+x4)+ln(1+x8)\ln(f(x))=\ln(1+x)+\ln(1+x^2)+\ln(1+x^4)+\ln(1+x^8)

Differentiate with respect to xx:

f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8.\frac{f'(x)}{f(x)} = \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8}\,.

Step 3: Evaluate at x=1x=1

f(1)16=12+22+42+82=0.5+1+2+4=7.5.\frac{f'(1)}{16} = \frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} = 0.5 + 1 + 2 + 4 = 7.5\,.

Thus,

f(1)=16×7.5=120.f'(1)= 16\times 7.5=120\,.