Solveeit Logo

Question

Question: $\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} > 1.$...

(x2)(x4)(x7)(x+2)(x+4)(x+7)>1.\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} > 1.

Answer

(,7)(4,2)(-\infty, -7) \cup (-4, -2)

Explanation

Solution

To solve the inequality (x2)(x4)(x7)(x+2)(x+4)(x+7)>1\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} > 1, we first rewrite it as:

(x2)(x4)(x7)(x+2)(x+4)(x+7)1>0\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} - 1 > 0

Combining the terms on the left side gives:

(x2)(x4)(x7)(x+2)(x+4)(x+7)(x+2)(x+4)(x+7)>0\frac{(x-2)(x-4)(x-7) - (x+2)(x+4)(x+7)}{(x+2)(x+4)(x+7)} > 0

Expanding the numerator:

(x313x2+50x56)(x3+13x2+50x+56)(x+2)(x+4)(x+7)>0\frac{(x^3 - 13x^2 + 50x - 56) - (x^3 + 13x^2 + 50x + 56)}{(x+2)(x+4)(x+7)} > 0

Simplifying the numerator:

26x2112(x+2)(x+4)(x+7)>0\frac{-26x^2 - 112}{(x+2)(x+4)(x+7)} > 0

Since 26x2112-26x^2 - 112 is always negative, we need the denominator to be negative as well:

(x+2)(x+4)(x+7)<0(x+2)(x+4)(x+7) < 0

The roots of the denominator are x=7,4,2x = -7, -4, -2. Testing intervals:

  • x<7x < -7: (x+2)(x+2), (x+4)(x+4), and (x+7)(x+7) are all negative, so the product is negative.

  • 7<x<4-7 < x < -4: (x+2)(x+2) and (x+4)(x+4) are negative, (x+7)(x+7) is positive, so the product is positive.

  • 4<x<2-4 < x < -2: (x+2)(x+2) is negative, (x+4)(x+4) and (x+7)(x+7) are positive, so the product is negative.

  • x>2x > -2: All factors are positive, so the product is positive.

Thus, the solution is x(,7)(4,2)x \in (-\infty, -7) \cup (-4, -2).