Solveeit Logo

Question

Question: An electron moving along the x-axis with an initial energy of 2.867 KeV enters a region of magnetic ...

An electron moving along the x-axis with an initial energy of 2.867 KeV enters a region of magnetic field B=3.01mTk^\overrightarrow{B}=3.01 mT \hat{k} at SS (See figure). The field extends between x=0x=0 and x=3x=3 cm. The electron is detected at the point QQ on a screen placed 8 cm away from the point SS. The distance dd between PP and QQ (on the screen) is (Electron's charge = 1.6×10191.6 \times 10^{-19} C, mass of electron = 9.1×10319.1 \times 10^{-31} kg) (834.8728.896\sqrt{834.87} \approx 28.896)

Answer

3.69 cm

Explanation

Solution

The problem describes the motion of an electron in a uniform magnetic field and then in a field-free region. We need to find the total vertical displacement of the electron on a screen.

1. Calculate the Kinetic Energy (KE) in Joules: Given initial energy KE = 2.867 KeV. KE=2.867×103 eVKE = 2.867 \times 10^3 \text{ eV} To convert eV to Joules, multiply by the charge of an electron (1.6×10191.6 \times 10^{-19} C): KE=2.867×103×1.6×1019 JKE = 2.867 \times 10^3 \times 1.6 \times 10^{-19} \text{ J} KE=4.5872×1016 JKE = 4.5872 \times 10^{-16} \text{ J}

2. Calculate the radius (R) of the circular path: The kinetic energy of the electron is related to its velocity by KE=12mv2KE = \frac{1}{2}mv^2, so v=2KEmv = \sqrt{\frac{2KE}{m}}. When a charged particle moves perpendicular to a uniform magnetic field, it follows a circular path with radius R=mvqBR = \frac{mv}{qB}. Substituting vv, we get R=2m(KE)qBR = \frac{\sqrt{2m(KE)}}{qB}. Given: Mass of electron (mm) = 9.1×10319.1 \times 10^{-31} kg Charge of electron (qq) = 1.6×10191.6 \times 10^{-19} C Magnetic field strength (BB) = 3.01 mT=3.01×1033.01 \text{ mT} = 3.01 \times 10^{-3} T

First, calculate 2m(KE)\sqrt{2m(KE)}: 2m(KE)=2×(9.1×1031 kg)×(4.5872×1016 J)2m(KE) = 2 \times (9.1 \times 10^{-31} \text{ kg}) \times (4.5872 \times 10^{-16} \text{ J}) 2m(KE)=8.348704×1046 kg m2/s22m(KE) = 8.348704 \times 10^{-46} \text{ kg m}^2/\text{s}^2 2m(KE)=834.8704×1048 kg m/s\sqrt{2m(KE)} = \sqrt{834.8704 \times 10^{-48}} \text{ kg m/s} Using the given approximation 834.8728.896\sqrt{834.87} \approx 28.896: 2m(KE)28.896×1024 kg m/s\sqrt{2m(KE)} \approx 28.896 \times 10^{-24} \text{ kg m/s}

Now, calculate qBqB: qB=(1.6×1019 C)×(3.01×103 T)qB = (1.6 \times 10^{-19} \text{ C}) \times (3.01 \times 10^{-3} \text{ T}) qB=4.816×1022 C TqB = 4.816 \times 10^{-22} \text{ C T}

Now, calculate R: R=28.896×1024 kg m/s4.816×1022 C TR = \frac{28.896 \times 10^{-24} \text{ kg m/s}}{4.816 \times 10^{-22} \text{ C T}} R=28.8964.816×102 mR = \frac{28.896}{4.816} \times 10^{-2} \text{ m} R=6.000×102 m=6.00 cmR = 6.000 \times 10^{-2} \text{ m} = 6.00 \text{ cm}

3. Determine the angle of deflection (θ) inside the magnetic field: The electron enters the magnetic field at x=0x=0 and exits at x=3x=3 cm. Let this width be W=3W = 3 cm. From the geometry of the circular path, the horizontal distance covered is W=RsinθW = R \sin \theta. sinθ=WR=3 cm6 cm=0.5\sin \theta = \frac{W}{R} = \frac{3 \text{ cm}}{6 \text{ cm}} = 0.5 Therefore, θ=30\theta = 30^\circ.

4. Calculate the vertical displacement within the magnetic field (yexity_{exit}): The vertical displacement of the electron as it travels through the magnetic field (from x=0x=0 to x=Wx=W) is given by yexit=R(1cosθ)y_{exit} = R(1 - \cos \theta). yexit=6 cm(1cos30)y_{exit} = 6 \text{ cm} (1 - \cos 30^\circ) yexit=6 cm(132)y_{exit} = 6 \text{ cm} (1 - \frac{\sqrt{3}}{2}) yexit=6 cm(10.8660)y_{exit} = 6 \text{ cm} (1 - 0.8660) yexit=6 cm(0.1340)=0.804 cmy_{exit} = 6 \text{ cm} (0.1340) = 0.804 \text{ cm}

5. Calculate the vertical displacement after exiting the magnetic field (ystraighty_{straight}): After exiting the magnetic field, the electron moves in a straight line at an angle θ\theta with the x-axis. The screen is placed 8 cm away from point S. The electron exits the field at x=3x=3 cm. The remaining horizontal distance to the screen is LW=8 cm3 cm=5 cmL - W = 8 \text{ cm} - 3 \text{ cm} = 5 \text{ cm}. The additional vertical displacement on the screen due to this straight-line motion is ystraight=(LW)tanθy_{straight} = (L - W) \tan \theta. ystraight=5 cm×tan30y_{straight} = 5 \text{ cm} \times \tan 30^\circ ystraight=5 cm×13y_{straight} = 5 \text{ cm} \times \frac{1}{\sqrt{3}} ystraight=5 cm×0.57735=2.88675 cmy_{straight} = 5 \text{ cm} \times 0.57735 = 2.88675 \text{ cm}

6. Calculate the total distance 'd' between P and Q: The total distance 'd' on the screen is the sum of the vertical displacement within the field and the vertical displacement after exiting the field. d=yexit+ystraightd = y_{exit} + y_{straight} d=0.804 cm+2.88675 cmd = 0.804 \text{ cm} + 2.88675 \text{ cm} d=3.69075 cmd = 3.69075 \text{ cm}

Rounding to two decimal places, d3.69 cmd \approx 3.69 \text{ cm}.