Solveeit Logo

Question

Question: A disc with its plane horizontal collides with a floor. Before the collision line of velocity vector...

A disc with its plane horizontal collides with a floor. Before the collision line of velocity vector of the disc makes an angle 60° with normal to the floor and after the collision, velocity vector of the disc becomes perpendicular to its velocity vector before the collision without any change in its magnitude. Find average value of the coefficient of friction between the disc and the floor.

Answer

1

Explanation

Solution

To solve this problem, we will use the principles of impulse-momentum and the definition of the coefficient of friction in terms of impulses.

Let the initial velocity of the disc be v1\vec{v_1} and the final velocity be v2\vec{v_2}. Let the magnitude of the velocity be vv. According to the problem statement, v1=v2=v|\vec{v_1}| = |\vec{v_2}| = v. This implies that the kinetic energy of the disc is conserved, meaning the collision is elastic, and the coefficient of restitution, ee, is 1.

Let's set up a coordinate system. Let the floor be the xyxy-plane, and the normal to the floor be along the zz-axis.

1. Initial Velocity v1\vec{v_1}: The velocity vector makes an angle of 6060^\circ with the normal to the floor (z-axis). Let's assume the initial velocity lies in the xzxz-plane for simplicity. This choice does not affect the final result for the coefficient of friction, as shown in the detailed thought process. The vertical component (along zz-axis) is v1z=vcos(60)=v/2v_{1z} = -v \cos(60^\circ) = -v/2 (negative sign indicates downward motion). The horizontal component (along xx-axis) is v1x=vsin(60)=v3/2v_{1x} = v \sin(60^\circ) = v\sqrt{3}/2. The yy-component is v1y=0v_{1y} = 0. So, v1=(v32)i^+0j^(v2)k^\vec{v_1} = \left(v\frac{\sqrt{3}}{2}\right)\hat{i} + 0\hat{j} - \left(\frac{v}{2}\right)\hat{k}.

2. Final Velocity v2\vec{v_2}: We are given two conditions for v2\vec{v_2}: a. v2=v|\vec{v_2}| = v. b. v2\vec{v_2} is perpendicular to v1\vec{v_1}, i.e., v1v2=0\vec{v_1} \cdot \vec{v_2} = 0.

Let v2=v2xi^+v2yj^+v2zk^\vec{v_2} = v_{2x}\hat{i} + v_{2y}\hat{j} + v_{2z}\hat{k}.

From condition (b): (v32)v2x+0v2y(v2)v2z=0\left(v\frac{\sqrt{3}}{2}\right)v_{2x} + 0 \cdot v_{2y} - \left(\frac{v}{2}\right)v_{2z} = 0 Multiplying by 2/v2/v (assuming v0v \neq 0): 3v2xv2z=0    v2z=3v2x\sqrt{3}v_{2x} - v_{2z} = 0 \implies v_{2z} = \sqrt{3}v_{2x}. (Equation 1)

3. Using Coefficient of Restitution: Since the collision is elastic (e=1e=1), the relative speed of separation along the normal is equal to the relative speed of approach. e=v2zv1ze = -\frac{v_{2z}}{v_{1z}} 1=v2z(v/2)    v2z=v/21 = -\frac{v_{2z}}{(-v/2)} \implies v_{2z} = v/2.

4. Determining Components of v2\vec{v_2}: Substitute v2z=v/2v_{2z} = v/2 into Equation 1: v/2=3v2x    v2x=v23v/2 = \sqrt{3}v_{2x} \implies v_{2x} = \frac{v}{2\sqrt{3}}.

Now use condition (a), v2=v|\vec{v_2}| = v: v2x2+v2y2+v2z2=v2v_{2x}^2 + v_{2y}^2 + v_{2z}^2 = v^2 (v23)2+v2y2+(v2)2=v2\left(\frac{v}{2\sqrt{3}}\right)^2 + v_{2y}^2 + \left(\frac{v}{2}\right)^2 = v^2 v212+v2y2+v24=v2\frac{v^2}{12} + v_{2y}^2 + \frac{v^2}{4} = v^2 v212+3v212+v2y2=v2\frac{v^2}{12} + \frac{3v^2}{12} + v_{2y}^2 = v^2 4v212+v2y2=v2\frac{4v^2}{12} + v_{2y}^2 = v^2 v23+v2y2=v2\frac{v^2}{3} + v_{2y}^2 = v^2 v2y2=v2v23=2v23v_{2y}^2 = v^2 - \frac{v^2}{3} = \frac{2v^2}{3} v2y=±v23v_{2y} = \pm v\sqrt{\frac{2}{3}}.

So, the final velocity components are v2x=v23v_{2x} = \frac{v}{2\sqrt{3}}, v2y=±v23v_{2y} = \pm v\sqrt{\frac{2}{3}}, and v2z=v2v_{2z} = \frac{v}{2}.

5. Calculating Impulses: The change in momentum is equal to the impulse. The normal impulse JNJ_N acts along the z-axis: JN=Δpz=m(v2zv1z)=m(v2(v2))=m(v2+v2)=mvJ_N = \Delta p_z = m(v_{2z} - v_{1z}) = m\left(\frac{v}{2} - \left(-\frac{v}{2}\right)\right) = m\left(\frac{v}{2} + \frac{v}{2}\right) = mv.

The frictional impulse Jf\vec{J_f} acts in the xyxy-plane: Jf=Δpxy=m(v2xv1x)i^+m(v2yv1y)j^\vec{J_f} = \Delta \vec{p}_{xy} = m(v_{2x} - v_{1x})\hat{i} + m(v_{2y} - v_{1y})\hat{j} Jx=m(v2xv1x)=m(v23v32)=mv(1323)=mv(223)=mv3J_x = m(v_{2x} - v_{1x}) = m\left(\frac{v}{2\sqrt{3}} - v\frac{\sqrt{3}}{2}\right) = mv\left(\frac{1 - 3}{2\sqrt{3}}\right) = mv\left(\frac{-2}{2\sqrt{3}}\right) = -\frac{mv}{\sqrt{3}}. Jy=m(v2yv1y)=m(±v230)=±mv23J_y = m(v_{2y} - v_{1y}) = m\left(\pm v\sqrt{\frac{2}{3}} - 0\right) = \pm mv\sqrt{\frac{2}{3}}.

The magnitude of the frictional impulse is Jf=Jx2+Jy2|\vec{J_f}| = \sqrt{J_x^2 + J_y^2}: Jf=(mv3)2+(±mv23)2|\vec{J_f}| = \sqrt{\left(-\frac{mv}{\sqrt{3}}\right)^2 + \left(\pm mv\sqrt{\frac{2}{3}}\right)^2} Jf=m2v23+2m2v23=3m2v23=m2v2=mv|\vec{J_f}| = \sqrt{\frac{m^2v^2}{3} + \frac{2m^2v^2}{3}} = \sqrt{\frac{3m^2v^2}{3}} = \sqrt{m^2v^2} = mv.

6. Calculating the Average Coefficient of Friction: The average coefficient of friction μ\mu is defined as the ratio of the magnitude of the frictional impulse to the magnitude of the normal impulse: μ=JfJN=mvmv=1\mu = \frac{|\vec{J_f}|}{J_N} = \frac{mv}{mv} = 1.