Question
Question: $3C_0 + 3^2 \frac{C_1}{2} + 3^3 \frac{C_2}{3} + ... + 3^{n+1} \frac{C_n}{n+1}$ equals to...
3C0+322C1+333C2+...+3n+1n+1Cn equals to

A
n+13n+1−1
B
n+13n+1+1
C
n+14n+1−1
D
n+14n+1−1
Answer
n+14n+1−1
Explanation
Solution
The sum is S=∑r=0n3r+1r+1(rn). Consider the binomial expansion (1+x)n=∑r=0n(rn)xr. Integrate from 0 to 3: ∫03(1+x)ndx=[n+1(1+x)n+1]03=n+14n+1−1. Also, ∫03∑r=0n(rn)xrdx=∑r=0n(rn)∫03xrdx=∑r=0n(rn)[r+1xr+1]03=∑r=0n(rn)r+13r+1=S. Therefore, S=n+14n+1−1.