Solveeit Logo

Question

Question: $3C_0 + 3^2 \frac{C_1}{2} + 3^3 \frac{C_2}{3} + ... + 3^{n+1} \frac{C_n}{n+1}$ equals to...

3C0+32C12+33C23+...+3n+1Cnn+13C_0 + 3^2 \frac{C_1}{2} + 3^3 \frac{C_2}{3} + ... + 3^{n+1} \frac{C_n}{n+1} equals to

A

3n+11n+1\frac{3^{n+1}-1}{n+1}

B

3n+1+1n+1\frac{3^{n+1}+1}{n+1}

C

4n+11n+1\frac{4^{n+1}-1}{n+1}

D

4n+11n+1\frac{4^{n+1}-1}{n+1}

Answer

4n+11n+1\frac{4^{n+1}-1}{n+1}

Explanation

Solution

The sum is S=r=0n3r+1(nr)r+1S = \sum_{r=0}^{n} 3^{r+1} \frac{\binom{n}{r}}{r+1}. Consider the binomial expansion (1+x)n=r=0n(nr)xr(1+x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r. Integrate from 00 to 33: 03(1+x)ndx=[(1+x)n+1n+1]03=4n+11n+1\int_0^3 (1+x)^n dx = \left[\frac{(1+x)^{n+1}}{n+1}\right]_0^3 = \frac{4^{n+1}-1}{n+1}. Also, 03r=0n(nr)xrdx=r=0n(nr)03xrdx=r=0n(nr)[xr+1r+1]03=r=0n(nr)3r+1r+1=S\int_0^3 \sum_{r=0}^{n} \binom{n}{r} x^r dx = \sum_{r=0}^{n} \binom{n}{r} \int_0^3 x^r dx = \sum_{r=0}^{n} \binom{n}{r} \left[\frac{x^{r+1}}{r+1}\right]_0^3 = \sum_{r=0}^{n} \binom{n}{r} \frac{3^{r+1}}{r+1} = S. Therefore, S=4n+11n+1S = \frac{4^{n+1}-1}{n+1}.