Solveeit Logo

Question

Question: If general solution of $\cos^2\theta - 2\sin\theta + \frac{1}{4} = 0$ is $\theta = \frac{n\pi}{A} + ...

If general solution of cos2θ2sinθ+14=0\cos^2\theta - 2\sin\theta + \frac{1}{4} = 0 is θ=nπA+(1)nπB,nZ\theta = \frac{n\pi}{A} + (-1)^n\frac{\pi}{B}, n \in Z then A+BA+B has the value

A

7

B

6

C

1

D

-7

Answer

7

Explanation

Solution

  1. Rewrite the equation using the Pythagorean identity:

    cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta

    Substituting into the equation:

    1sin2θ2sinθ+14=0sin2θ2sinθ+54=01 - \sin^2\theta - 2\sin\theta + \frac{1}{4} = 0 \quad \Rightarrow \quad -\sin^2\theta - 2\sin\theta + \frac{5}{4} = 0

    Multiply by -1:

    sin2θ+2sinθ54=0\sin^2\theta + 2\sin\theta - \frac{5}{4} = 0
  2. Solve the quadratic equation in sinθ\sin\theta:

    sinθ=2±4+52=2±32\sin\theta = \frac{-2 \pm \sqrt{4 + 5}}{2} = \frac{-2 \pm 3}{2}

    The valid solution is:

    sinθ=12.\sin\theta = \frac{1}{2}.
  3. The general solutions for sinθ=12\sin\theta = \frac{1}{2} are:

    θ=π6+2πkandθ=5π6+2πk(kZ)\theta = \frac{\pi}{6} + 2\pi k \quad \text{and} \quad \theta = \frac{5\pi}{6} + 2\pi k \quad (k \in \mathbb{Z})
  4. These can be written in the form:

    θ=πk+(1)kπ6(kZ)\theta = \pi k + (-1)^k \frac{\pi}{6} \quad (k \in \mathbb{Z})

    Comparing with the given form:

    θ=nπA+(1)nπB,\theta = \frac{n\pi}{A} + (-1)^n\frac{\pi}{B},

    we deduce A=1A = 1 and B=6B = 6.

  5. Therefore,

    A+B=1+6=7.A + B = 1 + 6 = 7.

Core Explanation:
Rewrite using 1sin2θ1-\sin^2\theta, solve for sinθ=1/2\sin\theta=1/2, express general solutions as θ=πk+(1)kπ/6\theta = \pi k + (-1)^k\pi/6 which corresponds to A=1,B=6A=1, B=6. So, A+B=7A+B=7.