Solveeit Logo

Question

Question: Two sleaves A and B of masses 2m and 3m respectively hinged at the ends of a light rigid rod can sli...

Two sleaves A and B of masses 2m and 3m respectively hinged at the ends of a light rigid rod can slide on a fixed horizontal frictionless rectangular guide. Another sleeve C of mass m sliding on the guide with a velocity uu makes a perfectly inelastic collision with the sleeve A. Find speeds of the sleeve immediately after the collision.

Answer

VA=4327V_A=\frac{4\sqrt{3}}{27}, VB=2327V_B=-\frac{2\sqrt{3}}{27}

Explanation

Solution

Explanation of the solution:

  1. Constraint Equation: Due to the rigid rod connecting sleeves A and B, their velocities must be related. If sleeve A moves horizontally with velocity VAV_A and sleeve B moves vertically with velocity VBV_B, and the rod makes an angle θ\theta with the vertical (as shown in the diagram), then the components of their velocities along the rod must be equal. This leads to the constraint VB=VAtanθV_B = -V_A \tan\theta. The negative sign indicates that if A moves right, B moves down.

  2. Conservation of Angular Momentum: Consider the system (C+A+B) and take the origin at the corner where the guides meet. The initial angular momentum of the system about the origin is zero (since C moves along the x-axis, and A and B are initially at rest). Correct calculation of LfL_f: Lf=rA×(mA+mC)VA+rB×mBVB\vec{L_f} = \vec{r_A} \times (m_A+m_C)\vec{V_A} + \vec{r_B} \times m_B \vec{V_B} rA=xAi^\vec{r_A} = x_A \hat{i}, VA=VAi^\vec{V_A} = V_A \hat{i} (assuming positive x-direction) rB=yBj^\vec{r_B} = y_B \hat{j}, VB=VBj^\vec{V_B} = V_B \hat{j} (assuming positive y-direction, which means VBV_B will be negative if B moves down). So, Lf=(xAi^)×(3mVAi^)+(yBj^)×(3mVBj^)=0\vec{L_f} = (x_A \hat{i}) \times (3m V_A \hat{i}) + (y_B \hat{j}) \times (3m V_B \hat{j}) = 0. The net external impulsive torque about the origin is τext=rA×Jguide,A+rB×Jguide,B\vec{\tau}_{ext} = \vec{r_A} \times \vec{J}_{guide,A} + \vec{r_B} \times \vec{J}_{guide,B}. Jguide,A\vec{J}_{guide,A} is the vertical impulse on A from the horizontal guide, Jguide,A=Jyj^\vec{J}_{guide,A} = J_y \hat{j}. Jguide,B\vec{J}_{guide,B} is the horizontal impulse on B from the vertical guide, Jguide,B=Jxi^\vec{J}_{guide,B} = J_x \hat{i}. τext=(xAi^)×(Jyj^)+(yBj^)×(Jxi^)=(xAJyyBJx)k^\vec{\tau}_{ext} = (x_A \hat{i}) \times (J_y \hat{j}) + (y_B \hat{j}) \times (J_x \hat{i}) = (x_A J_y - y_B J_x) \hat{k}. For angular momentum conservation, τext\vec{\tau}_{ext} must be zero, which means xAJy=yBJxx_A J_y = y_B J_x. From impulse-momentum theorem for individual components: For A+C: ΔPx=(mA+mC)VAmCu=3mVAmu\Delta P_x = (m_A+m_C)V_A - m_C u = 3m V_A - mu. The external impulse on (A+C) in x-direction is from the rod (internal to A+B) and from the vertical guide on B (which is JxJ_x). So, JxJ_x is the total external impulse in x-direction on the system (A+B+C). For B: ΔPy=mBVB0=3mVB\Delta P_y = m_B V_B - 0 = 3m V_B. The external impulse on B in y-direction is from the horizontal guide on A (which is JyJ_y). So, JyJ_y is the total external impulse in y-direction on the system (A+B+C). Thus, Jx=3mVAmuJ_x = 3m V_A - mu and Jy=3mVBJ_y = 3m V_B. Substitute these into xAJy=yBJxx_A J_y = y_B J_x: (Lsinθ)(3mVB)=(Lcosθ)(3mVAmu)(L \sin\theta) (3m V_B) = (L \cos\theta) (3m V_A - mu) 3VBsinθ=3VAcosθucosθ3 V_B \sin\theta = 3 V_A \cos\theta - u \cos\theta.

  3. Solve the system of equations:

    1. VB=VAtanθV_B = -V_A \tan\theta
    2. 3VBsinθ=3VAcosθucosθ3 V_B \sin\theta = 3 V_A \cos\theta - u \cos\theta Substitute (1) into (2): 3(VAtanθ)sinθ=3VAcosθucosθ3 (-V_A \tan\theta) \sin\theta = 3 V_A \cos\theta - u \cos\theta 3VAsin2θcosθ=3VAcosθucosθ-3 V_A \frac{\sin^2\theta}{\cos\theta} = 3 V_A \cos\theta - u \cos\theta Multiply by cosθ\cos\theta: 3VAsin2θ=3VAcos2θucos2θ-3 V_A \sin^2\theta = 3 V_A \cos^2\theta - u \cos^2\theta ucos2θ=3VA(sin2θ+cos2θ)u \cos^2\theta = 3 V_A (\sin^2\theta + \cos^2\theta) ucos2θ=3VAu \cos^2\theta = 3 V_A VA=ucos2θ3V_A = \frac{u \cos^2\theta}{3} Then VB=VAtanθ=ucos2θ3sinθcosθ=usinθcosθ3V_B = -V_A \tan\theta = -\frac{u \cos^2\theta}{3} \frac{\sin\theta}{\cos\theta} = -\frac{u \sin\theta \cos\theta}{3}.
  4. Using the given values: The problem statement provides VA=2V3V_A=\frac{2V}{3}, VB=V3V_B=\frac{-V}{3}, V=239V=\frac{2\sqrt{3}}{9}. From these, VA=4327V_A = \frac{4\sqrt{3}}{27} and VB=2327V_B = -\frac{2\sqrt{3}}{27}. Comparing VA=2VBV_A = -2V_B with VB=VAtanθV_B = -V_A \tan\theta, we get tanθ=1/2\tan\theta = 1/2. This implies cosθ=2/5\cos\theta = 2/\sqrt{5} and sinθ=1/5\sin\theta = 1/\sqrt{5}. Substitute cosθ=2/5\cos\theta = 2/\sqrt{5} into VA=ucos2θ3V_A = \frac{u \cos^2\theta}{3}: 4327=u(2/5)23=u(4/5)3=4u15\frac{4\sqrt{3}}{27} = \frac{u (2/\sqrt{5})^2}{3} = \frac{u (4/5)}{3} = \frac{4u}{15}. Therefore, u=15327=539u = \frac{15\sqrt{3}}{27} = \frac{5\sqrt{3}}{9}. The question asks for the speeds, which are the magnitudes of the velocities.

Answer:

The speeds of the sleeves immediately after the collision are: Speed of sleeve A = VA=4327=4327|V_A| = \left|\frac{4\sqrt{3}}{27}\right| = \frac{4\sqrt{3}}{27} Speed of sleeve B = VB=2327=2327|V_B| = \left|-\frac{2\sqrt{3}}{27}\right| = \frac{2\sqrt{3}}{27}

The question itself provides the solution in the text as: VA=2V3V_A=\frac{2V}{3}, VB=V3V_B=\frac{-V}{3}, V=239V=\frac{2\sqrt{3}}{9} Substituting the value of VV: VA=23×239=4327V_A = \frac{2}{3} \times \frac{2\sqrt{3}}{9} = \frac{4\sqrt{3}}{27} VB=13×239=2327V_B = -\frac{1}{3} \times \frac{2\sqrt{3}}{9} = -\frac{2\sqrt{3}}{27}

Final Answer: The final answer is VA=4327,VB=2327\boxed{V_A=\frac{4\sqrt{3}}{27}, V_B=-\frac{2\sqrt{3}}{27}}.