Solveeit Logo

Question

Question: The sum $\frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\frac{C_3}{5}+........$ equals...

The sum C02C13+C24C35+........\frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\frac{C_3}{5}+........ equals

A

(1) 1(n1)(n+1)\frac{1}{(n-1)(n+1)}

B

1(n+1)(n+2)\frac{1}{(n+1)(n+2)}

C

12(n1)(n+1)\frac{1}{2(n-1)(n+1)}

D

Zero

Answer

1(n+1)(n+2)\frac{1}{(n+1)(n+2)}

Explanation

Solution

The given sum is S=C02C13+C24C35+........S = \frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\frac{C_3}{5}+......... Assuming Ck=(nk)C_k = \binom{n}{k} and the series goes up to k=nk=n, the sum can be written as: S=k=0n(1)k(nk)k+2S = \sum_{k=0}^{n} (-1)^k \frac{\binom{n}{k}}{k+2}

We use the integral representation of 1k+2\frac{1}{k+2}: 1k+2=01xk+1dx\frac{1}{k+2} = \int_0^1 x^{k+1} dx

Substitute this into the sum: S=k=0n(1)k(nk)01xk+1dxS = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_0^1 x^{k+1} dx

Interchange the summation and integration: S=01(k=0n(1)k(nk)xk+1)dxS = \int_0^1 \left( \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^{k+1} \right) dx S=01x(k=0n(nk)(x)k)dxS = \int_0^1 x \left( \sum_{k=0}^{n} \binom{n}{k} (-x)^k \right) dx

The sum inside the parenthesis is the binomial expansion of (1x)n(1-x)^n: k=0n(nk)(x)k=(1x)n\sum_{k=0}^{n} \binom{n}{k} (-x)^k = (1-x)^n

So, the integral becomes: S=01x(1x)ndxS = \int_0^1 x (1-x)^n dx

This integral can be evaluated using substitution. Let u=1xu = 1-x, so du=dxdu = -dx. When x=0x=0, u=1u=1. When x=1x=1, u=0u=0. Also, x=1ux = 1-u. S=10(1u)un(du)S = \int_1^0 (1-u) u^n (-du) S=01(1u)unduS = \int_0^1 (1-u) u^n du S=01(unun+1)duS = \int_0^1 (u^n - u^{n+1}) du

Now, integrate term by term: S=[un+1n+1un+2n+2]01S = \left[ \frac{u^{n+1}}{n+1} - \frac{u^{n+2}}{n+2} \right]_0^1 S=(1n+1n+11n+2n+2)(00)S = \left( \frac{1^{n+1}}{n+1} - \frac{1^{n+2}}{n+2} \right) - (0 - 0) S=1n+11n+2S = \frac{1}{n+1} - \frac{1}{n+2}

Combine the fractions: S=(n+2)(n+1)(n+1)(n+2)S = \frac{(n+2) - (n+1)}{(n+1)(n+2)} S=1(n+1)(n+2)S = \frac{1}{(n+1)(n+2)}