Solveeit Logo

Question

Question: The interior angles of a polygon are in A.P. If the smallest angle is \(120^\circ\) and the common d...

The interior angles of a polygon are in A.P. If the smallest angle is 120120^\circ and the common difference is 55^\circ, then the number of sides in the polygon is

A

7

B

9

C

16

D

none of these

Answer

9

Explanation

Solution

Step 1: Sum of interior angles.
For an nn-sided polygon,

Sum=(n2)×180.\text{Sum} = (n-2)\times180^\circ.

Step 2: Sum via AP.
The interior angles are in AP with first term a=120a = 120^\circ and common difference d=5d = 5^\circ. So

Sum=n2[2a+(n1)d]=n2[2×120+(n1)×5].\text{Sum} = \frac{n}{2}\bigl[2a + (n-1)d\bigr] = \frac{n}{2}\bigl[2\times120^\circ + (n-1)\times5^\circ\bigr].

Step 3: Equate sums.

(n2)×180  =  n2[240+5(n1)]    (n2)×360=n(5n+235).(n-2)\times180^\circ \;=\;\frac{n}{2}\bigl[240^\circ + 5(n-1)\bigr] \;\Longrightarrow\;(n-2)\times360 = n(5n+235).

This simplifies to

n225n+144=0        (n16)(n9)=0        n=16 or 9.n^2 -25n +144 = 0 \;\implies\;(n-16)(n-9)=0 \;\implies\;n=16\text{ or }9.

Step 4: Validity check.
The largest angle must be <180<180^\circ:

a+(n1)d<180        120+5(n1)<180        n<13.a+(n-1)d <180^\circ \;\implies\;120^\circ +5(n-1)<180^\circ \;\implies\;n<13.

Hence n=9n=9 is the only feasible solution.