Question
Question: $\sqrt{3}$ sec10°+8sin 10°cos 80° is equal to-...
3 sec10°+8sin 10°cos 80° is equal to-

2
-2
0
3
2
Solution
The given expression is 3sec10∘+8sin10∘cos80∘.
We will simplify this expression step-by-step using trigonometric identities.
- Rewrite sec10∘ and cos80∘:
We know that secx=cosx1 and cos(90∘−x)=sinx.
So, sec10∘=cos10∘1.
And cos80∘=cos(90∘−10∘)=sin10∘.
Substitute these into the expression: E=cos10∘3+8sin10∘(sin10∘) E=cos10∘3+8sin210∘
- Use the double angle identity for sin2x:
We know that 2sin2x=1−cos2x.
So, 8sin210∘=4(2sin210∘)=4(1−cos(2×10∘))=4(1−cos20∘).
Substitute this back into the expression for E: E=cos10∘3+4(1−cos20∘) E=cos10∘3+4−4cos20∘
-
Combine the terms with cos10∘ and cos20∘:
To combine the first and last terms, find a common denominator: E=cos10∘3−4cos20∘cos10∘+4 -
Use the product-to-sum identity for cosAcosB:
We know that 2cosAcosB=cos(A+B)+cos(A−B).
Let A=20∘ and B=10∘.
So, 4cos20∘cos10∘=2(2cos20∘cos10∘) =2(cos(20∘+10∘)+cos(20∘−10∘)) =2(cos30∘+cos10∘) We know cos30∘=23. =2(23+cos10∘) =3+2cos10∘ -
Substitute this result back into the expression for E: E=cos10∘3−(3+2cos10∘)+4 E=cos10∘3−3−2cos10∘+4 E=cos10∘−2cos10∘+4 E=−2+4 E=2
The value of the expression is 2.