Solveeit Logo

Question

Question: $\sqrt{3}$ sec10°+8sin 10°cos 80° is equal to-...

3\sqrt{3} sec10°+8sin 10°cos 80° is equal to-

A

2

B

-2

C

0

D

3\sqrt{3}

Answer

2

Explanation

Solution

The given expression is 3sec10+8sin10cos80\sqrt{3} \sec 10^\circ + 8 \sin 10^\circ \cos 80^\circ.

We will simplify this expression step-by-step using trigonometric identities.

  1. Rewrite sec10\sec 10^\circ and cos80\cos 80^\circ:
    We know that secx=1cosx\sec x = \frac{1}{\cos x} and cos(90x)=sinx\cos(90^\circ - x) = \sin x.
    So, sec10=1cos10\sec 10^\circ = \frac{1}{\cos 10^\circ}.
    And cos80=cos(9010)=sin10\cos 80^\circ = \cos(90^\circ - 10^\circ) = \sin 10^\circ.

Substitute these into the expression: E=3cos10+8sin10(sin10)E = \frac{\sqrt{3}}{\cos 10^\circ} + 8 \sin 10^\circ (\sin 10^\circ) E=3cos10+8sin210E = \frac{\sqrt{3}}{\cos 10^\circ} + 8 \sin^2 10^\circ

  1. Use the double angle identity for sin2x\sin^2 x:
    We know that 2sin2x=1cos2x2 \sin^2 x = 1 - \cos 2x.
    So, 8sin210=4(2sin210)=4(1cos(2×10))=4(1cos20)8 \sin^2 10^\circ = 4 (2 \sin^2 10^\circ) = 4 (1 - \cos (2 \times 10^\circ)) = 4 (1 - \cos 20^\circ).

Substitute this back into the expression for EE: E=3cos10+4(1cos20)E = \frac{\sqrt{3}}{\cos 10^\circ} + 4 (1 - \cos 20^\circ) E=3cos10+44cos20E = \frac{\sqrt{3}}{\cos 10^\circ} + 4 - 4 \cos 20^\circ

  1. Combine the terms with cos10\cos 10^\circ and cos20\cos 20^\circ:
    To combine the first and last terms, find a common denominator: E=34cos20cos10cos10+4E = \frac{\sqrt{3} - 4 \cos 20^\circ \cos 10^\circ}{\cos 10^\circ} + 4

  2. Use the product-to-sum identity for cosAcosB\cos A \cos B:
    We know that 2cosAcosB=cos(A+B)+cos(AB)2 \cos A \cos B = \cos(A+B) + \cos(A-B).
    Let A=20A = 20^\circ and B=10B = 10^\circ.
    So, 4cos20cos10=2(2cos20cos10)4 \cos 20^\circ \cos 10^\circ = 2 (2 \cos 20^\circ \cos 10^\circ) =2(cos(20+10)+cos(2010))= 2 (\cos(20^\circ + 10^\circ) + \cos(20^\circ - 10^\circ)) =2(cos30+cos10)= 2 (\cos 30^\circ + \cos 10^\circ) We know cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}. =2(32+cos10)= 2 \left(\frac{\sqrt{3}}{2} + \cos 10^\circ \right) =3+2cos10= \sqrt{3} + 2 \cos 10^\circ

  3. Substitute this result back into the expression for EE: E=3(3+2cos10)cos10+4E = \frac{\sqrt{3} - (\sqrt{3} + 2 \cos 10^\circ)}{\cos 10^\circ} + 4 E=332cos10cos10+4E = \frac{\sqrt{3} - \sqrt{3} - 2 \cos 10^\circ}{\cos 10^\circ} + 4 E=2cos10cos10+4E = \frac{-2 \cos 10^\circ}{\cos 10^\circ} + 4 E=2+4E = -2 + 4 E=2E = 2

The value of the expression is 2.