Solveeit Logo

Question

Question: Solve: $|\log_{\sqrt{3}}x - 2| + |\log_3x - 2| = 2$...

Solve: log3x2+log3x2=2|\log_{\sqrt{3}}x - 2| + |\log_3x - 2| = 2

Answer

32/3,93^{2/3}, 9

Explanation

Solution

  1. Rewrite log3x\log_{\sqrt{3}}x in terms of log3x\log_3 x. log3x=2log3x\log_{\sqrt{3}}x = 2 \log_3 x.

  2. Substitute this into the equation: 2log3x2+log3x2=2|2 \log_3 x - 2| + |\log_3 x - 2| = 2.

  3. Let y=log3xy = \log_3 x. The equation becomes 2y1+y2=22|y - 1| + |y - 2| = 2.

  4. Solve the absolute value equation 2y1+y2=22|y - 1| + |y - 2| = 2 by considering cases based on y<1y < 1, 1y<21 \le y < 2, and y2y \ge 2.

  5. Case 1 (y<1y < 1): 2(1y)+(2y)=2    y=2/32(1-y) + (2-y) = 2 \implies y = 2/3. Valid.

  6. Case 2 (1y<21 \le y < 2): 2(y1)+(2y)=2    y=22(y-1) + (2-y) = 2 \implies y = 2. Not valid in the interval.

  7. Case 3 (y2y \ge 2): 2(y1)+(y2)=2    y=22(y-1) + (y-2) = 2 \implies y = 2. Valid.

  8. The solutions for yy are 2/32/3 and 22.

  9. Convert back to xx using x=3yx = 3^y. y=2/3    x=32/3y = 2/3 \implies x = 3^{2/3}; y=2    x=32=9y = 2 \implies x = 3^2 = 9.

  10. Verify that the solutions are in the domain x>0x > 0. Both 32/33^{2/3} and 99 are positive.