Solveeit Logo

Question

Question: Let S be a circle. Tangents are drawn to the circle S from a outside point P points of contacts of t...

Let S be a circle. Tangents are drawn to the circle S from a outside point P points of contacts of tangent are Q and R. A be any point (other than Q and R) on circle S and l,m,nl, m, n be the length of perpendicular from A to PQ, PR and QR respectively then

A

2n = l + m

B

n^2 = l^2 + m^2

C

n^2 = l m

D

None of these

Answer

n^2 = l m

Explanation

Solution

Let the circle be SS with center OO and radius rr. Let PP be an external point. Let PQPQ and PRPR be tangents to the circle at points QQ and RR respectively. QRQR is the chord of contact. Let AA be any point on the circle SS (other than QQ and RR). Let l,m,nl, m, n be the lengths of the perpendiculars from AA to PQPQ, PRPR, and QRQR respectively.

We can place the circle in a coordinate system. Let the circle be x2+y2=r2x^2 + y^2 = r^2. Let PP be (p,0)(p, 0) with p>rp > r. The equation of the chord of contact QRQR is px+0y=r2px + 0y = r^2, which simplifies to x=r2/px = r^2/p. The tangents PQPQ and PRPR have slopes k=±rp2r2k = \pm \frac{r}{\sqrt{p^2-r^2}}. Let these tangents be T1T_1 and T2T_2. The equations of the tangents can be written as y=k1(xp)y = k_1(x-p) and y=k2(xp)y = k_2(x-p), where k1=rp2r2k_1 = \frac{r}{\sqrt{p^2-r^2}} and k2=rp2r2k_2 = -\frac{r}{\sqrt{p^2-r^2}}. In the form Ax+By+C=0Ax+By+C=0, these are: T1:k1xyk1p=0T_1: k_1x - y - k_1p = 0 T2:k2xyk2p=0T_2: k_2x - y - k_2p = 0

Let A=(xA,yA)A = (x_A, y_A) be a point on the circle xA2+yA2=r2x_A^2 + y_A^2 = r^2. The distance ll from AA to PQPQ (say T2T_2) is l=k2xAyAk2pk22+1l = \frac{|k_2 x_A - y_A - k_2 p|}{\sqrt{k_2^2 + 1}}. The distance mm from AA to PRPR (say T1T_1) is m=k1xAyAk1pk12+1m = \frac{|k_1 x_A - y_A - k_1 p|}{\sqrt{k_1^2 + 1}}. The distance nn from AA to QRQR (the line xr2/p=0x - r^2/p = 0) is n=xAr2/pn = |x_A - r^2/p|.

We can simplify the denominators: k12+1=r2p2r2+1=p2p2r2k_1^2 + 1 = \frac{r^2}{p^2-r^2} + 1 = \frac{p^2}{p^2-r^2}, so k12+1=k22+1=pp2r2\sqrt{k_1^2+1} = \sqrt{k_2^2+1} = \frac{p}{\sqrt{p^2-r^2}}. Substituting k1k_1 and k2k_2: l=rp2r2xAyA+rp2r2ppp2r2=rxAp2r2yA+rppl = \frac{|-\frac{r}{\sqrt{p^2-r^2}} x_A - y_A + \frac{r}{\sqrt{p^2-r^2}} p|}{\frac{p}{\sqrt{p^2-r^2}}} = \frac{|-rx_A - \sqrt{p^2-r^2}y_A + rp|}{p} m=rp2r2xAyArp2r2ppp2r2=rxAp2r2yArppm = \frac{|\frac{r}{\sqrt{p^2-r^2}} x_A - y_A - \frac{r}{\sqrt{p^2-r^2}} p|}{\frac{p}{\sqrt{p^2-r^2}}} = \frac{|rx_A - \sqrt{p^2-r^2}y_A - rp|}{p}

Let's test the option (C) n2=lmn^2 = lm. n2=(xAr2p)2=(pxAr2p)2=(pxAr2)2p2n^2 = \left(x_A - \frac{r^2}{p}\right)^2 = \left(\frac{px_A - r^2}{p}\right)^2 = \frac{(px_A - r^2)^2}{p^2}. lm=rxAp2r2yA+rpprxAp2r2yArpplm = \frac{|-rx_A - \sqrt{p^2-r^2}y_A + rp|}{p} \cdot \frac{|rx_A - \sqrt{p^2-r^2}y_A - rp|}{p} lm=(rprxA)p2r2yA(rprxA)+p2r2yAp2lm = \frac{|(rp - rx_A) - \sqrt{p^2-r^2}y_A| \cdot |(rp - rx_A) + \sqrt{p^2-r^2}y_A|}{p^2} lm=(rprxA)2(p2r2)yA2p2lm = \frac{|(rp - rx_A)^2 - (p^2-r^2)y_A^2|}{p^2} lm=r2(pxA)2(p2r2)yA2p2lm = \frac{|r^2(p-x_A)^2 - (p^2-r^2)y_A^2|}{p^2} Using yA2=r2xA2y_A^2 = r^2 - x_A^2: lm=r2(p22pxA+xA2)(p2r2)(r2xA2)p2lm = \frac{|r^2(p^2 - 2px_A + x_A^2) - (p^2-r^2)(r^2-x_A^2)|}{p^2} lm=r2p22pr2xA+r2xA2(p2r2p2xA2r4+r2xA2)p2lm = \frac{|r^2p^2 - 2pr^2x_A + r^2x_A^2 - (p^2r^2 - p^2x_A^2 - r^4 + r^2x_A^2)|}{p^2} lm=r2p22pr2xA+r2xA2p2r2+p2xA2+r4r2xA2p2lm = \frac{|r^2p^2 - 2pr^2x_A + r^2x_A^2 - p^2r^2 + p^2x_A^2 + r^4 - r^2x_A^2|}{p^2} lm=2pr2xA+p2xA2+r4p2lm = \frac{|-2pr^2x_A + p^2x_A^2 + r^4|}{p^2} lm=p2xA22pr2xA+r4p2lm = \frac{|p^2x_A^2 - 2pr^2x_A + r^4|}{p^2} The numerator is (pxAr2)2(px_A - r^2)^2. lm=(pxAr2)2p2lm = \frac{(px_A - r^2)^2}{p^2}. Thus, n2=lmn^2 = lm is verified.

This relation n2=lmn^2 = lm is a known property for a point on a conic section, relating its distances to tangents and the chord of contact.

The final answer is n2=lm\boxed{n^2 = l m}.