Solveeit Logo

Question

Question: Let f be a polynomial function such that $f(3x) = f'(x) \cdot f''(x)$, for all $x \in R$. Then :...

Let f be a polynomial function such that f(3x)=f(x)f(x)f(3x) = f'(x) \cdot f''(x), for all xRx \in R. Then :

A

f(2)f(2)=0f'(2) - f(2) = 0

B

f(2)+f(2)=28f(2) + f'(2) = 28

C

f(2)f(2)+f(2)=10f(2) - f'(2) + f''(2) = 10

D

f(2)f(2)=4f''(2) - f(2) = 4

Answer

None of the given options is correct.

Explanation

Solution

We start by assuming that

f(x)=ax3+bx2+cx+df(x)=ax^3+bx^2+cx+d

with a0a\ne0. Then

f(x)=3ax2+2bx+candf(x)=6ax+2b.f'(x)=3ax^2+2bx+c \quad \text{and} \quad f''(x)=6ax+2b.

Given the functional equation

f(3x)=f(x)f(x)f(3x)=f'(x)f''(x)

we compute

f(3x)=a(3x)3+b(3x)2+c(3x)+d=27ax3+9bx2+3cx+d.f(3x)=a(3x)^3+b(3x)^2+c(3x)+d=27ax^3+9bx^2+3cx+d.

Also,

f(x)f(x)=(3ax2+2bx+c)(6ax+2b).f'(x)f''(x)=(3ax^2+2bx+c)(6ax+2b).

Expanding the product:

f(x)f(x)=3ax26ax+3ax22b+2bx6ax+2bx2b+c6ax+c2b=18a2x3+6abx2+12abx2+4b2x+6acx+2bc=18a2x3+18abx2+(4b2+6ac)x+2bc.\begin{aligned} f'(x)f''(x) &= 3ax^2\cdot6ax+3ax^2\cdot2b+2bx\cdot6ax+2bx\cdot2b+c\cdot6ax+c\cdot2b\\[1mm] &= 18a^2x^3 +6abx^2+12abx^2+4b^2x+6acx+2bc\\[1mm] &= 18a^2x^3+18abx^2+(4b^2+6ac)x+2bc. \end{aligned}

For the equation to hold for all xx, the coefficients must match:

  1. x^3:27a=18a227a=18a^2 ⟹ 18a227a=018a^2-27a=0 ⟹ 9a(2a3)=09a(2a-3)=0a=32\Rightarrow a=\frac{3}{2} (since a0a\ne0).
  2. x^2:9b=18ab9b=18ab ⟹ 9b=1832b=27b9b=18\cdot\frac{3}{2}\,b=27b ⟹ 9b27b=09b-27b=0 ⟹ b=0b=0.
  3. x^1:3c=4b2+6ac3c=4b^2+6ac ⟹ with b=0b=0, 3c=6ac=632c=9c3c=6ac=6\cdot\frac{3}{2}\,c=9c ⟹ 3c9c=03c-9c=0 ⟹ c=0c=0.
  4. Constant:d=2bc=0d=2bc=0.

Thus, the unique solution is

f(x)=32x3.f(x)=\frac{3}{2}x^3.

Now, we compute the required values at x=2x=2:

f(2)=328=12,f(x)=92x2f(2)=924=18,f(x)=9xf(2)=18.f(2)=\frac{3}{2}\cdot8=12,\quad f'(x)=\frac{9}{2}x^2\Rightarrow f'(2)=\frac{9}{2}\cdot4=18,\quad f''(x)=9x\Rightarrow f''(2)=18.

Checking the given options:

  1. f(2)f(2)=1812=6f'(2)-f(2)=18-12=6 (not 0).
  2. f(2)+f(2)=12+18=30f(2)+f'(2)=12+18=30 (not 28).
  3. f(2)f(2)+f(2)=1218+18=12f(2)-f'(2)+f''(2)=12-18+18=12 (not 10).
  4. f(2)f(2)=1812=6f''(2)-f(2)=18-12=6 (not 4).

Thus, none of the options is correct.

Assume ff cubic. Equate coefficients from f(3x)=f(x)f(x)f(3x)=f'(x)f''(x) to find a=32,b=c=d=0a=\frac{3}{2}, b=c=d=0. Then compute f(2)=12,  f(2)=18,  f(2)=18f(2)=12,\; f'(2)=18,\; f''(2)=18, and verify that none of the given expressions match.