Question
Question: Let f be a polynomial function such that $f(3x) = f'(x) \cdot f''(x)$, for all $x \in R$. Then :...
Let f be a polynomial function such that f(3x)=f′(x)⋅f′′(x), for all x∈R. Then :

A
f′(2)−f(2)=0
B
f(2)+f′(2)=28
C
f(2)−f′(2)+f′′(2)=10
D
f′′(2)−f(2)=4
Answer
None of the given options is correct.
Explanation
Solution
We start by assuming that
f(x)=ax3+bx2+cx+dwith a=0. Then
f′(x)=3ax2+2bx+candf′′(x)=6ax+2b.Given the functional equation
f(3x)=f′(x)f′′(x)we compute
f(3x)=a(3x)3+b(3x)2+c(3x)+d=27ax3+9bx2+3cx+d.Also,
f′(x)f′′(x)=(3ax2+2bx+c)(6ax+2b).Expanding the product:
f′(x)f′′(x)=3ax2⋅6ax+3ax2⋅2b+2bx⋅6ax+2bx⋅2b+c⋅6ax+c⋅2b=18a2x3+6abx2+12abx2+4b2x+6acx+2bc=18a2x3+18abx2+(4b2+6ac)x+2bc.For the equation to hold for all x, the coefficients must match:
- x^3: 27a=18a2 ⟹ 18a2−27a=0 ⟹ 9a(2a−3)=0 ⇒a=23 (since a=0).
- x^2: 9b=18ab ⟹ 9b=18⋅23b=27b ⟹ 9b−27b=0 ⟹ b=0.
- x^1: 3c=4b2+6ac ⟹ with b=0, 3c=6ac=6⋅23c=9c ⟹ 3c−9c=0 ⟹ c=0.
- Constant: d=2bc=0.
Thus, the unique solution is
f(x)=23x3.Now, we compute the required values at x=2:
f(2)=23⋅8=12,f′(x)=29x2⇒f′(2)=29⋅4=18,f′′(x)=9x⇒f′′(2)=18.Checking the given options:
- f′(2)−f(2)=18−12=6 (not 0).
- f(2)+f′(2)=12+18=30 (not 28).
- f(2)−f′(2)+f′′(2)=12−18+18=12 (not 10).
- f′′(2)−f(2)=18−12=6 (not 4).
Thus, none of the options is correct.
Assume f cubic. Equate coefficients from f(3x)=f′(x)f′′(x) to find a=23,b=c=d=0. Then compute f(2)=12,f′(2)=18,f′′(2)=18, and verify that none of the given expressions match.