Solveeit Logo

Question

Question: Let $E_1 = \begin{Bmatrix} x \in R : x \neq 1 \text{ and } \frac{x}{x-1} > 0 \end{Bmatrix}$ and $E_2...

Let E1={xR:x1 and xx1>0}E_1 = \begin{Bmatrix} x \in R : x \neq 1 \text{ and } \frac{x}{x-1} > 0 \end{Bmatrix} and E2={xE1:sin1(loge(xx1)) is a real number}E_2 = \begin{Bmatrix} x \in E_1 : \sin^{-1} \left( \log_e \left( \frac{x}{x-1} \right) \right) \text{ is a real number} \end{Bmatrix}; (Here, the inverse trigonometric function sin1x\sin^{-1} x assumes values in [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]).

Let f:E1Rf: E_1 \rightarrow R be the function defined by f(x)=loge(xx1)f(x) = \log_e \left( \frac{x}{x-1} \right) and

g;E2Rg; E_2 \rightarrow R be the function defined by g(x)=sin1(loge(xx1))g(x) = \sin^{-1} \left( \log_e \left( \frac{x}{x-1} \right) \right). [JEE Advanced 2018]

List - I List - II

(P) The range of ff is (1) (,11e][ee1,)\left( -\infty, \frac{1}{1-e} \right] \cup \left[ \frac{e}{e-1}, \infty \right)

(Q) The range of gg contains (2) (0,1)(0,1)

(R) The domain of ff contains (3) [12,12]\left[ -\frac{1}{2}, \frac{1}{2} \right]

(S) The domain of gg is (4) (,0)(0,)(-\infty, 0) \cup (0, \infty)

(5) (,ee1]\left( -\infty, \frac{e}{e-1} \right]

(6) (,0)[12,ee1](-\infty, 0) \cup \left[ \frac{1}{2}, \frac{e}{e-1} \right]

The correct option is:

A

P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 1

B

P \rightarrow 3; Q \rightarrow 3; R \rightarrow 6; S \rightarrow 5

C

P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 6

D

P \rightarrow 4; Q \rightarrow 3; R \rightarrow 6; S \rightarrow 5

Answer

P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 1

Explanation

Solution

The problem requires us to determine the domain and range of two functions, ff and gg, which are defined based on sets E1E_1 and E2E_2.

Step 1: Determine the set E1E_1. E1={xR:x1 and xx1>0}E_1 = \begin{Bmatrix} x \in R : x \neq 1 \text{ and } \frac{x}{x-1} > 0 \end{Bmatrix}

For xx1>0\frac{x}{x-1} > 0, we analyze the signs of the numerator and denominator:

Case 1: x>0x > 0 and x1>0    x>1x-1 > 0 \implies x > 1. Case 2: x<0x < 0 and x1<0    x<0x-1 < 0 \implies x < 0.

So, xx1>0\frac{x}{x-1} > 0 when x(,0)(1,)x \in (-\infty, 0) \cup (1, \infty). The condition x1x \neq 1 is already satisfied by this interval.

Thus, E1=(,0)(1,)E_1 = (-\infty, 0) \cup (1, \infty).

Step 2: Determine the set E2E_2. E2={xE1:sin1(loge(xx1)) is a real number}E_2 = \begin{Bmatrix} x \in E_1 : \sin^{-1} \left( \log_e \left( \frac{x}{x-1} \right) \right) \text{ is a real number} \end{Bmatrix}

For sin1(y)\sin^{-1}(y) to be a real number, its argument yy must satisfy 1y1-1 \le y \le 1.

Here, y=loge(xx1)y = \log_e \left( \frac{x}{x-1} \right).

So, we need 1loge(xx1)1-1 \le \log_e \left( \frac{x}{x-1} \right) \le 1.

Since loge\log_e is an increasing function, we can exponentiate with base ee:

e1xx1e1e^{-1} \le \frac{x}{x-1} \le e^1

1exx1e\frac{1}{e} \le \frac{x}{x-1} \le e.

We solve two inequalities:

(a) xx11e\frac{x}{x-1} \ge \frac{1}{e}

xx11e0    ex(x1)e(x1)0    (e1)x+1e(x1)0\frac{x}{x-1} - \frac{1}{e} \ge 0 \implies \frac{ex - (x-1)}{e(x-1)} \ge 0 \implies \frac{(e-1)x + 1}{e(x-1)} \ge 0.

Since e>0e > 0 and e1>0e-1 > 0, this simplifies to (e1)x+1x10\frac{(e-1)x + 1}{x-1} \ge 0.

The critical points are x=1x = 1 and x=1e1x = -\frac{1}{e-1}.

Using a sign analysis, the solution is x(,1e1](1,)x \in (-\infty, -\frac{1}{e-1}] \cup (1, \infty).

(b) xx1e\frac{x}{x-1} \le e

xx1e0    xe(x1)x10    (1e)x+ex10\frac{x}{x-1} - e \le 0 \implies \frac{x - e(x-1)}{x-1} \le 0 \implies \frac{(1-e)x + e}{x-1} \le 0.

Since 1e<01-e < 0, we can multiply by 1-1 and reverse the inequality: (e1)xex10\frac{(e-1)x - e}{x-1} \ge 0.

The critical points are x=1x = 1 and x=ee1x = \frac{e}{e-1}.

Using a sign analysis, the solution is x(,1)[ee1,)x \in (-\infty, 1) \cup [\frac{e}{e-1}, \infty).

The values of xx for which 1loge(xx1)1-1 \le \log_e \left( \frac{x}{x-1} \right) \le 1 are the intersection of the solutions for (a) and (b):

((,1e1](1,))((,1)[ee1,))\left( (-\infty, -\frac{1}{e-1}] \cup (1, \infty) \right) \cap \left( (-\infty, 1) \cup [\frac{e}{e-1}, \infty) \right)

This intersection is x(,1e1][ee1,)x \in (-\infty, -\frac{1}{e-1}] \cup [\frac{e}{e-1}, \infty).

Finally, E2E_2 is the intersection of this result with E1=(,0)(1,)E_1 = (-\infty, 0) \cup (1, \infty).

Since 1e1<0-\frac{1}{e-1} < 0, (,1e1](,0)(-\infty, -\frac{1}{e-1}] \subset (-\infty, 0).

Since ee1>1\frac{e}{e-1} > 1, [ee1,)(1,)[\frac{e}{e-1}, \infty) \subset (1, \infty).

Therefore, E2=(,1e1][ee1,)E_2 = (-\infty, -\frac{1}{e-1}] \cup [\frac{e}{e-1}, \infty).

Note that 11e=1e1\frac{1}{1-e} = -\frac{1}{e-1}.

So, E2=(,11e][ee1,)E_2 = \left( -\infty, \frac{1}{1-e} \right] \cup \left[ \frac{e}{e-1}, \infty \right).

Matching the options:

(S) The domain of gg is:

The domain of gg is E2E_2.

E2=(,11e][ee1,)E_2 = \left( -\infty, \frac{1}{1-e} \right] \cup \left[ \frac{e}{e-1}, \infty \right), which matches option (1).

So, S \rightarrow 1.

(R) The domain of ff contains:

The domain of ff is E1=(,0)(1,)E_1 = (-\infty, 0) \cup (1, \infty).

We need to find which option is a subset of E1E_1.

Option (1) is E2E_2. Since E2E1E_2 \subset E_1, E1E_1 contains E2E_2. So R \rightarrow 1 is possible.

Option (6) is (,0)[12,ee1](-\infty, 0) \cup \left[ \frac{1}{2}, \frac{e}{e-1} \right]. This set is not contained in E1E_1 because 12\frac{1}{2} is not in (1,)(1, \infty).

Therefore, R \rightarrow 1.

(P) The range of ff is:

f(x)=loge(xx1)f(x) = \log_e \left( \frac{x}{x-1} \right). The domain of ff is E1=(,0)(1,)E_1 = (-\infty, 0) \cup (1, \infty).

Let t=xx1t = \frac{x}{x-1}.

If x(,0)x \in (-\infty, 0): As xx \to -\infty, t=111/x1t = \frac{1}{1 - 1/x} \to 1. As x0x \to 0^-, t0+t \to 0^+. So t(0,1)t \in (0, 1).

If x(1,)x \in (1, \infty): As x1+x \to 1^+, t=111/xt = \frac{1}{1 - 1/x} \to \infty. As xx \to \infty, t1t \to 1. So t(1,)t \in (1, \infty).

Thus, for xE1x \in E_1, the range of xx1\frac{x}{x-1} is (0,1)(1,)(0, 1) \cup (1, \infty).

Now we find the range of loge(t)\log_e(t) for t(0,1)(1,)t \in (0, 1) \cup (1, \infty).

If t(0,1)t \in (0, 1), loge(t)(,0)\log_e(t) \in (-\infty, 0).

If t(1,)t \in (1, \infty), loge(t)(0,)\log_e(t) \in (0, \infty).

Combining these, the range of f(x)f(x) is (,0)(0,)=R{0}(-\infty, 0) \cup (0, \infty) = R \setminus \{0\}.

This matches option (4).

So, P \rightarrow 4.

(Q) The range of gg contains:

g(x)=sin1(loge(xx1))g(x) = \sin^{-1} \left( \log_e \left( \frac{x}{x-1} \right) \right). The domain of gg is E2E_2.

For xE2x \in E_2, we know that 1exx1e\frac{1}{e} \le \frac{x}{x-1} \le e.

Let Y=loge(xx1)Y = \log_e \left( \frac{x}{x-1} \right).

Since 1exx1e\frac{1}{e} \le \frac{x}{x-1} \le e, taking loge\log_e (which is increasing), we get:

loge(1e)loge(xx1)loge(e)\log_e \left( \frac{1}{e} \right) \le \log_e \left( \frac{x}{x-1} \right) \le \log_e(e)

1Y1-1 \le Y \le 1.

The function g(x)=sin1(Y)g(x) = \sin^{-1}(Y).

The range of sin1(Y)\sin^{-1}(Y) for Y[1,1]Y \in [-1, 1] is [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right].

So, the range of gg is exactly [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right].

We need to find which of the given options is contained in [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right].

Note that π21.57\frac{\pi}{2} \approx 1.57.

Option (2) is (0,1)(0,1). This is contained in [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right].

Option (3) is [12,12]\left[ -\frac{1}{2}, \frac{1}{2} \right]. This is also contained in [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right].

Since the question asks "The range of gg contains", both (2) and (3) are possible.

However, in JEE Advanced, typically for "contains", the most specific (largest possible) set is preferred if multiple options are subsets. Both are valid.

Let's look at the multiple choice options provided for the final answer.

(A) P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 1 (B) P \rightarrow 3; Q \rightarrow 3; R \rightarrow 6; S \rightarrow 5 (C) P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 6 (D) P \rightarrow 4; Q \rightarrow 3; R \rightarrow 6; S \rightarrow 5

From our analysis: P \rightarrow 4 R \rightarrow 1 S \rightarrow 1

Let's check the options (A), (C), (D) for consistency with P, R, S.

Option (A): P \rightarrow 4; R \rightarrow 1; S \rightarrow 1. This is consistent. For Q, it says Q \rightarrow 2. Option (C): P \rightarrow 4; R \rightarrow 1. But S \rightarrow 6, which is incorrect. So (C) is out. Option (D): P \rightarrow 4. But R \rightarrow 6, which is incorrect. S \rightarrow 5 is also incorrect. So (D) is out. Option (B): P \rightarrow 3 (incorrect); R \rightarrow 6 (incorrect); S \rightarrow 5 (incorrect). So (B) is out.

This implies that option (A) is the correct choice.

Let's confirm Q \rightarrow 2. The range of gg is [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right].

Option (2) is (0,1)(0,1). Since (0,1)[π2,π2](0,1) \subset \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right], Q \rightarrow 2 is correct.

Final mapping: P \rightarrow 4 Q \rightarrow 2 R \rightarrow 1 S \rightarrow 1

This matches option (A).

The final answer is A\boxed{A}