Solveeit Logo

Question

Question: Let $\bar{a} \times \bar{b} + \bar{b} = \bar{c} \times \bar{a} + \bar{b} \times \bar{c}$ where $|\ba...

Let aˉ×bˉ+bˉ=cˉ×aˉ+bˉ×cˉ\bar{a} \times \bar{b} + \bar{b} = \bar{c} \times \bar{a} + \bar{b} \times \bar{c} where aˉ=bˉ|\bar{a}| = |\bar{b}| then identify the correct statement(s)

A

aˉ.bˉ=0\bar{a}.\bar{b} = 0

B

bˉ.cˉ=0\bar{b}.\bar{c} = 0

C

cˉ.aˉ=0\bar{c}.\bar{a} = 0

D

cˉ=0ˉ\bar{c} = \bar{0}

Answer

A, B, C

Explanation

Solution

The given equation is aˉ×bˉ+bˉ=cˉ×aˉ+bˉ×cˉ\bar{a} \times \bar{b} + \bar{b} = \bar{c} \times \bar{a} + \bar{b} \times \bar{c}, with the condition aˉ=bˉ|\bar{a}| = |\bar{b}|.

Rearranging the equation: aˉ×bˉcˉ×aˉbˉ×cˉ+bˉ=0ˉ\bar{a} \times \bar{b} - \bar{c} \times \bar{a} - \bar{b} \times \bar{c} + \bar{b} = \bar{0}

Using the property xˉ×yˉ=yˉ×xˉ\bar{x} \times \bar{y} = -\bar{y} \times \bar{x}, we have cˉ×aˉ=aˉ×cˉ\bar{c} \times \bar{a} = -\bar{a} \times \bar{c} and bˉ×cˉ=cˉ×bˉ\bar{b} \times \bar{c} = -\bar{c} \times \bar{b}. Substituting these into the equation: aˉ×bˉ+aˉ×cˉ+cˉ×bˉ+bˉ=0ˉ\bar{a} \times \bar{b} + \bar{a} \times \bar{c} + \bar{c} \times \bar{b} + \bar{b} = \bar{0} aˉ×(bˉ+cˉ)+cˉ×bˉ+bˉ=0ˉ\bar{a} \times (\bar{b} + \bar{c}) + \bar{c} \times \bar{b} + \bar{b} = \bar{0}

Taking the dot product of the original equation with bˉ\bar{b}: bˉ(aˉ×bˉ+bˉ)=bˉ(cˉ×aˉ+bˉ×cˉ)\bar{b} \cdot (\bar{a} \times \bar{b} + \bar{b}) = \bar{b} \cdot (\bar{c} \times \bar{a} + \bar{b} \times \bar{c}) bˉ(aˉ×bˉ)+bˉbˉ=bˉ(cˉ×aˉ)+bˉ(bˉ×cˉ)\bar{b} \cdot (\bar{a} \times \bar{b}) + \bar{b} \cdot \bar{b} = \bar{b} \cdot (\bar{c} \times \bar{a}) + \bar{b} \cdot (\bar{b} \times \bar{c})

Using the property of scalar triple product xˉ(yˉ×xˉ)=0\bar{x} \cdot (\bar{y} \times \bar{x}) = 0 and xˉ(xˉ×yˉ)=0\bar{x} \cdot (\bar{x} \times \bar{y}) = 0: 0+bˉ2=bˉ(cˉ×aˉ)+00 + |\bar{b}|^2 = \bar{b} \cdot (\bar{c} \times \bar{a}) + 0 bˉ2=bˉ(cˉ×aˉ)|\bar{b}|^2 = \bar{b} \cdot (\bar{c} \times \bar{a})

Using the cyclic property of scalar triple product bˉ(cˉ×aˉ)=aˉ(bˉ×cˉ)\bar{b} \cdot (\bar{c} \times \bar{a}) = \bar{a} \cdot (\bar{b} \times \bar{c}). So, bˉ2=aˉ(bˉ×cˉ)|\bar{b}|^2 = \bar{a} \cdot (\bar{b} \times \bar{c}).

Taking the dot product of the original equation with aˉ\bar{a}: aˉ(aˉ×bˉ+bˉ)=aˉ(cˉ×aˉ+bˉ×cˉ)\bar{a} \cdot (\bar{a} \times \bar{b} + \bar{b}) = \bar{a} \cdot (\bar{c} \times \bar{a} + \bar{b} \times \bar{c}) aˉ(aˉ×bˉ)+aˉbˉ=aˉ(cˉ×aˉ)+aˉ(bˉ×cˉ)\bar{a} \cdot (\bar{a} \times \bar{b}) + \bar{a} \cdot \bar{b} = \bar{a} \cdot (\bar{c} \times \bar{a}) + \bar{a} \cdot (\bar{b} \times \bar{c}) 0+aˉbˉ=0+aˉ(bˉ×cˉ)0 + \bar{a} \cdot \bar{b} = 0 + \bar{a} \cdot (\bar{b} \times \bar{c}) aˉbˉ=aˉ(bˉ×cˉ)\bar{a} \cdot \bar{b} = \bar{a} \cdot (\bar{b} \times \bar{c})

Comparing the results from dot products with aˉ\bar{a} and bˉ\bar{b}: aˉbˉ=aˉ(bˉ×cˉ)\bar{a} \cdot \bar{b} = \bar{a} \cdot (\bar{b} \times \bar{c}) and bˉ2=aˉ(bˉ×cˉ)|\bar{b}|^2 = \bar{a} \cdot (\bar{b} \times \bar{c}). Therefore, aˉbˉ=bˉ2\bar{a} \cdot \bar{b} = |\bar{b}|^2. Since aˉ=bˉ|\bar{a}| = |\bar{b}|, we have aˉbˉ=aˉ2\bar{a} \cdot \bar{b} = |\bar{a}|^2.

From aˉbˉ=bˉ2\bar{a} \cdot \bar{b} = |\bar{b}|^2, if aˉbˉ=0\bar{a} \cdot \bar{b} = 0, then bˉ2=0|\bar{b}|^2 = 0, which implies bˉ=0ˉ\bar{b} = \bar{0}. Since aˉ=bˉ|\bar{a}| = |\bar{b}|, aˉ=0ˉ\bar{a} = \bar{0}.

If aˉ=0ˉ\bar{a} = \bar{0} and bˉ=0ˉ\bar{b} = \bar{0}, the original equation becomes 0ˉ+0ˉ=0ˉ+0ˉ\bar{0} + \bar{0} = \bar{0} + \bar{0}, which is true. In this case, aˉbˉ=00=0\bar{a} \cdot \bar{b} = 0 \cdot 0 = 0.

Also, taking the dot product of the original equation with cˉ\bar{c}: cˉ(aˉ×bˉ+bˉ)=cˉ(cˉ×aˉ+bˉ×cˉ)\bar{c} \cdot (\bar{a} \times \bar{b} + \bar{b}) = \bar{c} \cdot (\bar{c} \times \bar{a} + \bar{b} \times \bar{c}) cˉ(aˉ×bˉ)+cˉbˉ=cˉ(cˉ×aˉ)+cˉ(bˉ×cˉ)\bar{c} \cdot (\bar{a} \times \bar{b}) + \bar{c} \cdot \bar{b} = \bar{c} \cdot (\bar{c} \times \bar{a}) + \bar{c} \cdot (\bar{b} \times \bar{c}) cˉ(aˉ×bˉ)+cˉbˉ=0+0\bar{c} \cdot (\bar{a} \times \bar{b}) + \bar{c} \cdot \bar{b} = 0 + 0 cˉ(aˉ×bˉ)+cˉbˉ=0\bar{c} \cdot (\bar{a} \times \bar{b}) + \bar{c} \cdot \bar{b} = 0.

If aˉ=bˉ=0ˉ\bar{a} = \bar{b} = \bar{0}, then the original equation is satisfied for any cˉ\bar{c}.

In this case: (A) aˉbˉ=00=0\bar{a} \cdot \bar{b} = 0 \cdot 0 = 0. True. (B) bˉcˉ=0cˉ=0\bar{b} \cdot \bar{c} = 0 \cdot \bar{c} = 0. True. (C) cˉaˉ=cˉ0=0\bar{c} \cdot \bar{a} = \bar{c} \cdot 0 = 0. True. (D) cˉ=0ˉ\bar{c} = \bar{0}. Not necessarily true.

Therefore, statements A, B, and C are correct.