Solveeit Logo

Question

Question: A thin conducting loop shaped as a semicircle of radius $r$ rotates with angular speed $\omega$ abou...

A thin conducting loop shaped as a semicircle of radius rr rotates with angular speed ω\omega about its straight diameter. The rotation axis is orthogonal to a uniform external magnetic induction BB. The closed circuit has total resistance RR. Calculate the average electrical power delivered over one full revolution.

A

(Bπr2ω)22R\frac{(B\pi r^2 \omega)^2}{2R}

B

(Bπr2ω)28R\frac{(B\pi r^2 \omega)^2}{8R}

C

Bπr2ω2R\frac{B\pi r^2 \omega}{2R}

D

(Bπrω2)28R\frac{(B\pi r \omega^2)^2}{8R}

Answer

(Bπr2ω)28R\frac{(B\pi r^2 \omega)^2}{8R}

Explanation

Solution

The magnetic flux through the semicircular loop is given by Φ(t)=BA(t)\Phi(t) = \vec{B} \cdot \vec{A}(t). The area vector of the semicircle is A(t)=Asemi(cos(ωt)k^sin(ωt)j^)\vec{A}(t) = A_{semi} (\cos(\omega t)\hat{k} - \sin(\omega t)\hat{j}), where Asemi=12πr2A_{semi} = \frac{1}{2}\pi r^2. The flux is Φ(t)=Asemiω(Bycos(ωt)+Bzsin(ωt))\Phi(t) = A_{semi} \omega (B_y \cos(\omega t) + B_z \sin(\omega t)). The induced EMF is E(t)=dΦdt=Asemiω(Bycos(ωt)+Bzsin(ωt))\mathcal{E}(t) = -\frac{d\Phi}{dt} = A_{semi} \omega (B_y \cos(\omega t) + B_z \sin(\omega t)). The amplitude of the EMF is E0=AsemiωB=12πr2ωB\mathcal{E}_0 = A_{semi} \omega B = \frac{1}{2}\pi r^2 \omega B. The RMS value of the EMF is Erms=E02=Bπr2ω22\mathcal{E}_{rms} = \frac{\mathcal{E}_0}{\sqrt{2}} = \frac{B \pi r^2 \omega}{2\sqrt{2}}. The average electrical power delivered is Pavg=Erms2R=1R(Bπr2ω22)2=B2π2r4ω28R=(Bπr2ω)28RP_{avg} = \frac{\mathcal{E}_{rms}^2}{R} = \frac{1}{R} \left(\frac{B \pi r^2 \omega}{2\sqrt{2}}\right)^2 = \frac{B^2 \pi^2 r^4 \omega^2}{8R} = \frac{(B\pi r^2 \omega)^2}{8R}.