Solveeit Logo

Question

Question: A particle is executing simple harmonic motion with an amplitude of 2 cm. At the mean position veloc...

A particle is executing simple harmonic motion with an amplitude of 2 cm. At the mean position velocity of the particle is 10 m/s. The distance of the particle from the mean position when its speed becomes 525\sqrt{2} m/s is

Answer

The particle is 2cm \sqrt{2}\, \text{cm} (approximately 1.414 cm) from the mean position.

Explanation

Solution

For a particle in SHM, we have

v2=ω2(A2y2)v^2 = \omega^2 (A^2 - y^2)

At the mean position vmax=ωAv_{\max} = \omega A. Given:

  • Amplitude A=2cm=0.02mA=2\,\text{cm}=0.02\,\text{m}
  • Maximum speed vmax=10m/sv_{\max}=10\,\text{m/s}

So,

ω=100.02=500s1\omega = \frac{10}{0.02}=500\,\text{s}^{-1}

When the speed v=52m/sv=5\sqrt{2}\,\text{m/s}, apply the formula:

(52)2=5002(A2y2)(5\sqrt{2})^2 = 500^2 \left(A^2 - y^2\right) 50=250000(0.0004y2)50 = 250000 \left(0.0004 - y^2\right) 0.0004y2=50250000=0.00020.0004 - y^2 = \frac{50}{250000}=0.0002 y2=0.00040.0002=0.0002y^2 = 0.0004-0.0002 = 0.0002 y=0.0002=0.01414m=1.414cmy = \sqrt{0.0002}=0.01414\,\text{m} =1.414\,\text{cm}