Solveeit Logo

Question

Question: 148. A r.v. X assumes values 1, 2, 3, ... n with equal probabilities. what will be n if Var(X) = E(X...

  1. A r.v. X assumes values 1, 2, 3, ... n with equal probabilities. what will be n if Var(X) = E(X)?
A

1

B

6

C

2

D

7

Answer

7

Explanation

Solution

For a discrete uniform distribution from 1 to n, we have:

E(X)=n+12andVar(X)=n2112E(X)=\frac{n+1}{2} \quad \text{and} \quad Var(X)=\frac{n^2-1}{12}

Setting Var(X)=E(X)Var(X) = E(X):

n2112=n+12\frac{n^2-1}{12} = \frac{n+1}{2}

Multiply both sides by 12:

n21=6(n+1)n^2-1=6(n+1)

Simplify:

n26n7=0n^2 - 6n - 7 = 0

Solving the quadratic equation:

n=6±36+282=6±82n = \frac{6 \pm \sqrt{36+28}}{2} = \frac{6 \pm 8}{2}

Taking the positive value:

n=7n=7