Solveeit Logo

Question

Question: The current drawn from the battery in the given network is (Internal resistance of the battery is ne...

The current drawn from the battery in the given network is (Internal resistance of the battery is negligible)

A

1.2 A

B

2.4 A

C

4 A

D

4.8 A

Answer

2.4 A

Explanation

Solution

  1. Top branch: Resistors in series:

    Rtop=6Ω+4Ω=10Ω.R_{top} = 6\Omega + 4\Omega = 10\Omega.
  2. Bottom branch assumption: The wording suggests the 10Ω and 4Ω resistors are in parallel, then in series with the 6Ω. Calculate the parallel combination:

    R34=10Ω×4Ω10Ω+4Ω=4014=207Ω2.857Ω.R_{34} = \frac{10\Omega \times 4\Omega}{10\Omega+4\Omega} = \frac{40}{14} = \frac{20}{7}\Omega \approx 2.857\Omega.

    Then,

    Rbottom=6Ω+207Ω=42+207Ω=627Ω8.857Ω.R_{bottom} = 6\Omega + \frac{20}{7}\Omega = \frac{42+20}{7}\Omega = \frac{62}{7}\Omega \approx 8.857\Omega.
  3. Equivalent resistance of parallel branches:

    1Req=110Ω+1(62/7)Ω=110+762.\frac{1}{R_{eq}}=\frac{1}{10\Omega}+\frac{1}{(62/7)\Omega} =\frac{1}{10}+\frac{7}{62}.

    Calculate:

    1Req=0.1+0.11290.2129Req10.21294.70Ω.\frac{1}{R_{eq}} = 0.1 + 0.1129 \approx 0.2129 \quad\Longrightarrow\quad R_{eq} \approx \frac{1}{0.2129} \approx 4.70\Omega.
  4. Current from the battery:

    I=VReq=12V4.70Ω2.55A.I=\frac{V}{R_{eq}}=\frac{12\,V}{4.70\Omega}\approx2.55\,A.
  5. Choosing the best option: Among the options, the closest answer is 2.4 A.