Solveeit Logo

Question

Question: A metal sphere of radius R, density $\rho_1$ moves with terminal velocity $V_1$ through a liquid of ...

A metal sphere of radius R, density ρ1\rho_1 moves with terminal velocity V1V_1 through a liquid of density σ\sigma. Another sphere of same radius but density ρ2\rho_2 moves through same liquid. Its terminal velocity is V2V_2. The ratio V1:V2V_1:V_2 is

A

(ρ2+σ):(ρ1σ)(\rho_2 + \sigma) : (\rho_1 - \sigma)

B

(ρ1+σ):(ρ2σ)(\rho_1 + \sigma) : (\rho_2 - \sigma)

C

(ρ2σ):(ρ1σ)(\rho_2 - \sigma) : (\rho_1 - \sigma)

D

(ρ1σ):(ρ2σ)(\rho_1 - \sigma) : (\rho_2 - \sigma)

Answer

(ρ1σ):(ρ2σ)(\rho_1 - \sigma) : (\rho_2 - \sigma)

Explanation

Solution

For a sphere moving through a liquid at terminal velocity, the net force is zero. Using Stokes' law for the viscous drag, the terminal velocity is given by:

V=29(ρsphereσ)gR2ηV = \frac{2}{9}\frac{(\rho_{\text{sphere}} - \sigma)gR^2}{\eta}

Thus, for the two spheres:

V1(ρ1σ)V_1 \propto (\rho_1 - \sigma) and V2(ρ2σ)V_2 \propto (\rho_2 - \sigma)

So, the ratio is:

V1V2=ρ1σρ2σ\frac{V_1}{V_2} = \frac{\rho_1 - \sigma}{\rho_2 - \sigma}