Solveeit Logo

Question

Question: Two forces act on a particle simultaneously as shown in the figure. Find net force in milli new on t...

Two forces act on a particle simultaneously as shown in the figure. Find net force in milli new on the particle. [Dyne is the CGS unit of force]

Answer

sqrt(3)

Explanation

Solution

The two forces acting on the particle are F1=100 dyneF_1 = 100 \text{ dyne} and F2=1.0 milli newtonF_2 = 1.0 \text{ milli newton}. The angle between the forces is θ=60\theta = 60^\circ.

First, we convert the force F1F_1 from dyne to milli newton. The relationship between dyne and newton is 1 newton=105 dyne1 \text{ newton} = 10^5 \text{ dyne}. So, 1 dyne=105 newton1 \text{ dyne} = 10^{-5} \text{ newton}. F1=100 dyne=100×105 newton=103 newtonF_1 = 100 \text{ dyne} = 100 \times 10^{-5} \text{ newton} = 10^{-3} \text{ newton}. The unit milli newton is 1 milli newton=103 newton1 \text{ milli newton} = 10^{-3} \text{ newton}. Therefore, F1=103 newton=1 milli newtonF_1 = 10^{-3} \text{ newton} = 1 \text{ milli newton}. The second force is given as F2=1.0 milli newtonF_2 = 1.0 \text{ milli newton}. So, we have two forces of equal magnitude, F1=1 mNF_1 = 1 \text{ mN} and F2=1 mNF_2 = 1 \text{ mN}, acting at an angle of θ=60\theta = 60^\circ.

To find the net force (resultant force), we use the parallelogram law of vector addition. The magnitude of the resultant force RR of two forces F1F_1 and F2F_2 acting at an angle θ\theta is given by: R=F12+F22+2F1F2cosθR = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta} Substituting the values: R=(1 mN)2+(1 mN)2+2(1 mN)(1 mN)cos(60)R = \sqrt{(1 \text{ mN})^2 + (1 \text{ mN})^2 + 2(1 \text{ mN})(1 \text{ mN})\cos(60^\circ)} R=12+12+2(1)(1)cos(60) mNR = \sqrt{1^2 + 1^2 + 2(1)(1)\cos(60^\circ)} \text{ mN} We know that cos(60)=12\cos(60^\circ) = \frac{1}{2}. R=1+1+2(1)(1)(12) mNR = \sqrt{1 + 1 + 2(1)(1)\left(\frac{1}{2}\right)} \text{ mN} R=1+1+1 mNR = \sqrt{1 + 1 + 1} \text{ mN} R=3 milli newtonR = \sqrt{3} \text{ milli newton}.

The net force on the particle is 3\sqrt{3} milli newton.