Solveeit Logo

Question

Question: The equation of a progressive wave is, $y=a \sin 2\pi (nt - \frac{x}{5})$. The ratio of maximum part...

The equation of a progressive wave is, y=asin2π(ntx5)y=a \sin 2\pi (nt - \frac{x}{5}). The ratio of maximum particle velocity to wave velocity is

A

πa5\frac{\pi a}{5}

B

2πa5\frac{2\pi a}{5}

C

3πa5\frac{3\pi a}{5}

D

4πa5\frac{4\pi a}{5}

Answer

2πa5\frac{2\pi a}{5}

Explanation

Solution

The given wave is

y=asin(2π(ntx5)).y = a \sin\left( 2\pi\left(nt - \frac{x}{5}\right) \right).

Step 1: Identify angular frequency and wave number

Rewrite the argument as:

2πnt2π5x.2\pi nt - \frac{2\pi}{5}x.

Thus,

ω=2πnandk=2π5.\omega = 2\pi n \quad \text{and} \quad k = \frac{2\pi}{5}.

Step 2: Determine wave velocity

The phase (wave) velocity is

v=ωk=2πn2π/5=5n.v = \frac{\omega}{k} = \frac{2\pi n}{2\pi/5} = 5n.

Step 3: Find maximum particle velocity

The transverse particle velocity is given by

vy=yt=acos(2π(ntx5))2πn.v_y = \frac{\partial y}{\partial t} = a \cdot \cos\left(2\pi\left(nt - \frac{x}{5}\right)\right) \cdot 2\pi n.

The maximum value (when cos\cos term is 1) is:

(vy)max=2πna.(v_y)_{\text{max}} = 2\pi n a.

Step 4: Compute the ratio

(vy)maxv=2πna5n=2πa5.\frac{(v_y)_{\text{max}}}{v} = \frac{2\pi n a}{5n} = \frac{2\pi a}{5}.