Solveeit Logo

Question

Question: The electric field for a electromagnetic wave in free space is $\bar{E}$ = 30 cos (kz - 5 x $10^{8}t...

The electric field for a electromagnetic wave in free space is Eˉ\bar{E} = 30 cos (kz - 5 x 108t10^{8}t) i^\hat{i} . The magnitude of wave vector k is (velocity of EM wave in free space = 3 x 10810^{8} m/s)

A

3/5

B

5/3

C

3

D

5

Answer

5/3

Explanation

Solution

The electric field of an electromagnetic wave in free space is given by:

Eˉ=30cos(kz5×108t)i^\bar{E} = 30 \cos (kz - 5 \times 10^{8}t) \hat{i}

Comparing with the general form Eˉ=E0cos(kzωt)i^\bar{E} = E_0 \cos (kz - \omega t) \hat{i}, we get ω=5×108\omega = 5 \times 10^{8} rad/s.

The velocity of an electromagnetic wave in free space (cc) is related to ω\omega and kk by:

c=ωkc = \frac{\omega}{k}

Given c=3×108c = 3 \times 10^{8} m/s, we can find kk:

k=ωc=5×1083×108=53k = \frac{\omega}{c} = \frac{5 \times 10^{8}}{3 \times 10^{8}} = \frac{5}{3} rad/m