Solveeit Logo

Question

Question: The distance between the parallel lines given by $(x+7y)^2+4\sqrt{2}(x+7y)-42=0$...

The distance between the parallel lines given by (x+7y)2+42(x+7y)42=0(x+7y)^2+4\sqrt{2}(x+7y)-42=0

Answer

2

Explanation

Solution

Let Z=x+7yZ = x+7y. The given equation becomes a quadratic equation in ZZ: Z2+42Z42=0Z^2 + 4\sqrt{2}Z - 42 = 0

Solving this quadratic equation for ZZ using the quadratic formula Z=b±b24ac2aZ = \frac{-b \pm \sqrt{b^2-4ac}}{2a}: Z=42±(42)24(1)(42)2(1)Z = \frac{-4\sqrt{2} \pm \sqrt{(4\sqrt{2})^2 - 4(1)(-42)}}{2(1)} Z=42±32+1682Z = \frac{-4\sqrt{2} \pm \sqrt{32 + 168}}{2} Z=42±2002Z = \frac{-4\sqrt{2} \pm \sqrt{200}}{2} Z=42±1022Z = \frac{-4\sqrt{2} \pm 10\sqrt{2}}{2}

This gives two distinct values for ZZ: Z1=42+1022=622=32Z_1 = \frac{-4\sqrt{2} + 10\sqrt{2}}{2} = \frac{6\sqrt{2}}{2} = 3\sqrt{2} Z2=421022=1422=72Z_2 = \frac{-4\sqrt{2} - 10\sqrt{2}}{2} = \frac{-14\sqrt{2}}{2} = -7\sqrt{2}

Substituting back Z=x+7yZ = x+7y, we obtain the equations of two parallel lines: Line 1: x+7y=32    x+7y32=0x+7y = 3\sqrt{2} \implies x+7y - 3\sqrt{2} = 0 Line 2: x+7y=72    x+7y+72=0x+7y = -7\sqrt{2} \implies x+7y + 7\sqrt{2} = 0

The distance between two parallel lines of the form ax+by+c1=0ax+by+c_1=0 and ax+by+c2=0ax+by+c_2=0 is given by the formula: d=c1c2a2+b2d = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}

For our lines, a=1a=1, b=7b=7, c1=32c_1=-3\sqrt{2}, and c2=72c_2=7\sqrt{2}. d=327212+72d = \frac{|-3\sqrt{2} - 7\sqrt{2}|}{\sqrt{1^2 + 7^2}} d=1021+49d = \frac{|-10\sqrt{2}|}{\sqrt{1 + 49}} d=10250d = \frac{10\sqrt{2}}{\sqrt{50}} d=10252d = \frac{10\sqrt{2}}{5\sqrt{2}} d=2d = 2