Solveeit Logo

Question

Question: The complex numbers $z_1, z_2 \dots z_n$, represents the vertices of a regular polygon of n sides in...

The complex numbers z1,z2znz_1, z_2 \dots z_n, represents the vertices of a regular polygon of n sides in order, inscribed in a circle of unit radius and z3+zn=Az1+Az2z_3 + z_n = Az_1 + \overline{A}z_2, which of the following statement/s is/are correct

A

if n = 4 then A=5A = \sqrt{5}

B

if n = 6 then A=4A = \sqrt{4}

C

if n = 8 then A=3A = \sqrt{3}

D

if n = 12 then A=2A = \sqrt{2}

Answer

None of the options are correct.

Explanation

Solution

We shall show that if the vertices of a regular n–gon (with unit circumradius) are taken as

zk=e2πi(k1)/n(k=1,2,n)z_k=e^{2\pi i (k-1)/n}\quad (k=1,2,\ldots n),

then z3+zn=e4πi/n+e2πi/nz_3+z_n=e^{4\pi i/n}+e^{-2\pi i/n}

and

z1=1,z2=e2πi/nz_1=1,\quad z_2=e^{2\pi i/n}.

The equation to be satisfied is z3+zn=Az1+Az2e4πi/n+e2πi/n=A+Ae2πi/n.z_3+z_n=A\,z_1+\overline{A}\,z_2\quad\Longrightarrow\quad e^{4\pi i/n}+e^{-2\pi i/n}=A+\,\overline{A}\,e^{2\pi i/n}\,.

A common way to “solve” an equation like this is to try to make a guess that AA is a (real) constant (that is, A=AA=\overline{A}). (Indeed, in many such problems one eventually finds a symmetry forcing a real answer.) Assuming ARA\in\Bbb R,

the equation becomes e4πi/n+e2πi/n=A(1+e2πi/n).e^{4\pi i/n}+e^{-2\pi i/n}=A\Bigl(1+e^{2\pi i/n}\Bigr).

Now equate the imaginary and real parts. Write e4πi/n=cos4πn+isin4πn,e2πi/n=cos2πn+isin2πn,e2πi/n=cos2πnisin2πn.e^{4\pi i/n}=\cos\frac{4\pi}{n}+i\sin\frac{4\pi}{n},\quad e^{2\pi i/n}=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n},\quad e^{-2\pi i/n}=\cos\frac{2\pi}{n}-i\sin\frac{2\pi}{n}\,.

Then

e4πi/n+e2πi/n=[cos4πn+cos2πn]+i[sin4πnsin2πn]e^{4\pi i/n}+e^{-2\pi i/n}=\Bigl[\cos\frac{4\pi}{n}+\cos\frac{2\pi}{n}\Bigr]+i\Bigl[\sin\frac{4\pi}{n}-\sin\frac{2\pi}{n}\Bigr]

and

A(1+e2πi/n)=A[1+cos2πn]+iAsin2πn.A\Bigl(1+e^{2\pi i/n}\Bigr)=A\Bigl[1+\cos\frac{2\pi}{n}\Bigr]+ i\,A\sin\frac{2\pi}{n}\,.

Thus equating imaginary parts we need sin4πnsin2πn=Asin2πn.\sin\frac{4\pi}{n}-\sin\frac{2\pi}{n} = A\,\sin\frac{2\pi}{n}\,.

Provided that sin2πn0\sin\frac{2\pi}{n}\neq 0 (which is the case for n4n\ge4) we get A=sin(4π/n)sin(2π/n)sin(2π/n).A=\frac{\sin(4\pi/n)-\sin(2\pi/n)}{\sin(2\pi/n)}\,.

Using the sine subtraction formula: sin4πnsin2πn=2cos3πnsinπn,\sin\frac{4\pi}{n}-\sin\frac{2\pi}{n} = 2\cos\frac{3\pi}{n}\sin\frac{\pi}{n}\,,

and writing sin2πn=2sinπncosπn,\sin\frac{2\pi}{n}=2\sin\frac{\pi}{n}\cos\frac{\pi}{n}\,,

we obtain A=2cos3πnsinπn2sinπncosπn=cos3πncosπn.A=\frac{2\cos\frac{3\pi}{n}\sin\frac{\pi}{n}}{2\sin\frac{\pi}{n}\cos\frac{\pi}{n}}=\frac{\cos\frac{3\pi}{n}}{\cos\frac{\pi}{n}}\,.

Thus, if AA is assumed real then A=cos(3π/n)cos(π/n).A=\frac{\cos(3\pi/n)}{\cos(\pi/n)}\,.

Let us check each option:

  1. For n=4n=4: A=cos(3π/4)cos(π/4)=2222=1.A=\frac{\cos(3\pi/4)}{\cos(\pi/4)}=\frac{-\frac{\sqrt2}{2}}{\frac{\sqrt2}{2}}=-1.

Option (A) claims A=5A=\sqrt5; false.

  1. For n=6n=6: A=cos(3π/6)cos(π/6)=cos(π/2)cos(π/6)=03/2=0.A=\frac{\cos(3\pi/6)}{\cos(\pi/6)}=\frac{\cos(\pi/2)}{\cos(\pi/6)}=\frac{0}{\sqrt3/2}=0.

Option (B) claims A=4=2A=\sqrt{4}=2; false.

  1. For n=8n=8: A=cos(3π/8)cos(π/8).A=\frac{\cos(3\pi/8)}{\cos(\pi/8)}.

Numerically, cos(3π/8)0.3827\cos(3\pi/8)\approx0.3827 and cos(π/8)0.9239\cos(\pi/8)\approx0.9239 so that A0.414.A\approx0.414.

Option (C) claims A=31.732A=\sqrt{3}\approx1.732; false.

  1. For n=12n=12: A=cos(3π/12)cos(π/12)=cos(π/4)cos(π/12)=22cos(π/12).A=\frac{\cos(3\pi/12)}{\cos(\pi/12)}=\frac{\cos(\pi/4)}{\cos(\pi/12)}=\frac{\frac{\sqrt2}{2}}{\cos(\pi/12)}.

Numerically, cos(π/12)0.9659\cos(\pi/12)\approx0.9659 so that A0.70710.96590.732,A\approx\frac{0.7071}{0.9659}\approx0.732,

whereas Option (D) claims A=21.414A=\sqrt2\approx1.414; false.

Thus none of the given statements (A)–(D) is correct.

In summary:

  • None of the options are correct. The calculated value of A does not match any of the options provided for n = 4, 6, 8, or 12.