Solveeit Logo

Question

Question: In the circuit shown, if a wire is connected between points $A$ and $B$. How much current will flow ...

In the circuit shown, if a wire is connected between points AA and BB. How much current will flow through that wire?

A

5A

B

103A\frac{10}{3}A

C

203A\frac{20}{3}A

D

53A\frac{5}{3}A

Answer

103A\frac{10}{3}A

Explanation

Solution

When a wire connects points A and B, their potentials become equal, i.e., VA=VB=VV_A = V_B = V. Let the left side of the battery be VL=80VV_L = 80V and the right side be VR=0VV_R = 0V.

Using Kirchhoff's Current Law (KCL) at node A: Current entering A from the left: ILA=VLVA6Ω=80V6I_{LA} = \frac{V_L - V_A}{6\Omega} = \frac{80 - V}{6}. Current leaving A to the right: IAR=VAVR12Ω=V12I_{AR} = \frac{V_A - V_R}{12\Omega} = \frac{V}{12}. Let IABI_{AB} be the current flowing from A to B. KCL at A: ILA=IAR+IAB    IAB=80V6V12I_{LA} = I_{AR} + I_{AB} \implies I_{AB} = \frac{80 - V}{6} - \frac{V}{12}.

Using KCL at node B: Current entering B from the left: ILB=VLVB12Ω=80V12I_{LB} = \frac{V_L - V_B}{12\Omega} = \frac{80 - V}{12}. Current leaving B to the right: IBR=VBVR6Ω=V6I_{BR} = \frac{V_B - V_R}{6\Omega} = \frac{V}{6}. KCL at B: ILB+IAB=IBRI_{LB} + I_{AB} = I_{BR} (since IABI_{AB} enters B). IAB=IBRILB=V680V12I_{AB} = I_{BR} - I_{LB} = \frac{V}{6} - \frac{80 - V}{12}.

Equating the two expressions for IABI_{AB}: 80V6V12=V680V12\frac{80 - V}{6} - \frac{V}{12} = \frac{V}{6} - \frac{80 - V}{12} Multiply by 12: 2(80V)V=2V(80V)2(80 - V) - V = 2V - (80 - V) 1602VV=2V80+V160 - 2V - V = 2V - 80 + V 1603V=3V80160 - 3V = 3V - 80 240=6V240 = 6V V=40VV = 40V.

Now, calculate IABI_{AB}: IAB=804064012=4064012=203103=103AI_{AB} = \frac{80 - 40}{6} - \frac{40}{12} = \frac{40}{6} - \frac{40}{12} = \frac{20}{3} - \frac{10}{3} = \frac{10}{3}A.