Solveeit Logo

Question

Question: If $\theta = \frac{\pi}{15}$, then value of $\frac{(\sin 5\theta + \cos 5\theta) + (\sin 7\theta - \...

If θ=π15\theta = \frac{\pi}{15}, then value of (sin5θ+cos5θ)+(sin7θcos7θ)(sin8θ+cos8θ)+(sin10θcos10θ)\frac{(\sin 5\theta + \cos 5\theta) + (\sin 7\theta - \cos 7\theta)}{(\sin 8\theta + \cos 8\theta) + (\sin 10\theta - \cos 10\theta)} is equal to -

A

-1

B

3122\frac{\sqrt{3}-1}{2\sqrt{2}}

C

1

D

3+122\frac{\sqrt{3}+1}{2\sqrt{2}}

Answer

1

Explanation

Solution

The problem asks us to find the value of a given trigonometric expression when θ=π15\theta = \frac{\pi}{15}.

Let the given expression be EE: E=(sin5θ+cos5θ)+(sin7θcos7θ)(sin8θ+cos8θ)+(sin10θcos10θ)E = \frac{(\sin 5\theta + \cos 5\theta) + (\sin 7\theta - \cos 7\theta)}{(\sin 8\theta + \cos 8\theta) + (\sin 10\theta - \cos 10\theta)}

First, let's simplify the numerator (NN) and the denominator (DD) separately.

Step 1: Simplify the Numerator (N) N=(sin5θ+cos5θ)+(sin7θcos7θ)N = (\sin 5\theta + \cos 5\theta) + (\sin 7\theta - \cos 7\theta) Rearrange the terms: N=(sin5θ+sin7θ)+(cos5θcos7θ)N = (\sin 5\theta + \sin 7\theta) + (\cos 5\theta - \cos 7\theta) Apply the sum-to-product formulas: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)

For the first part (sin5θ+sin7θ)(\sin 5\theta + \sin 7\theta): A=5θ,B=7θA = 5\theta, B = 7\theta A+B2=5θ+7θ2=6θ\frac{A+B}{2} = \frac{5\theta+7\theta}{2} = 6\theta AB2=5θ7θ2=θ\frac{A-B}{2} = \frac{5\theta-7\theta}{2} = -\theta So, sin5θ+sin7θ=2sin(6θ)cos(θ)=2sin(6θ)cos(θ)\sin 5\theta + \sin 7\theta = 2 \sin(6\theta) \cos(-\theta) = 2 \sin(6\theta) \cos(\theta) (since cos(x)=cosx\cos(-x) = \cos x)

For the second part (cos5θcos7θ)(\cos 5\theta - \cos 7\theta): A=5θ,B=7θA = 5\theta, B = 7\theta A+B2=6θ\frac{A+B}{2} = 6\theta AB2=θ\frac{A-B}{2} = -\theta So, cos5θcos7θ=2sin(6θ)sin(θ)=2sin(6θ)(sinθ)=2sin(6θ)sin(θ)\cos 5\theta - \cos 7\theta = -2 \sin(6\theta) \sin(-\theta) = -2 \sin(6\theta) (-\sin\theta) = 2 \sin(6\theta) \sin(\theta) (since sin(x)=sinx\sin(-x) = -\sin x)

Substitute these back into NN: N=2sin(6θ)cos(θ)+2sin(6θ)sin(θ)N = 2 \sin(6\theta) \cos(\theta) + 2 \sin(6\theta) \sin(\theta) Factor out 2sin(6θ)2 \sin(6\theta): N=2sin(6θ)(cos(θ)+sin(θ))N = 2 \sin(6\theta) (\cos(\theta) + \sin(\theta))

Step 2: Simplify the Denominator (D) D=(sin8θ+cos8θ)+(sin10θcos10θ)D = (\sin 8\theta + \cos 8\theta) + (\sin 10\theta - \cos 10\theta) Rearrange the terms: D=(sin8θ+sin10θ)+(cos8θcos10θ)D = (\sin 8\theta + \sin 10\theta) + (\cos 8\theta - \cos 10\theta) Apply the sum-to-product formulas:

For the first part (sin8θ+sin10θ)(\sin 8\theta + \sin 10\theta): A=8θ,B=10θA = 8\theta, B = 10\theta A+B2=8θ+10θ2=9θ\frac{A+B}{2} = \frac{8\theta+10\theta}{2} = 9\theta AB2=8θ10θ2=θ\frac{A-B}{2} = \frac{8\theta-10\theta}{2} = -\theta So, sin8θ+sin10θ=2sin(9θ)cos(θ)=2sin(9θ)cos(θ)\sin 8\theta + \sin 10\theta = 2 \sin(9\theta) \cos(-\theta) = 2 \sin(9\theta) \cos(\theta)

For the second part (cos8θcos10θ)(\cos 8\theta - \cos 10\theta): A=8θ,B=10θA = 8\theta, B = 10\theta A+B2=9θ\frac{A+B}{2} = 9\theta AB2=θ\frac{A-B}{2} = -\theta So, cos8θcos10θ=2sin(9θ)sin(θ)=2sin(9θ)(sinθ)=2sin(9θ)sin(θ)\cos 8\theta - \cos 10\theta = -2 \sin(9\theta) \sin(-\theta) = -2 \sin(9\theta) (-\sin\theta) = 2 \sin(9\theta) \sin(\theta)

Substitute these back into DD: D=2sin(9θ)cos(θ)+2sin(9θ)sin(θ)D = 2 \sin(9\theta) \cos(\theta) + 2 \sin(9\theta) \sin(\theta) Factor out 2sin(9θ)2 \sin(9\theta): D=2sin(9θ)(cos(θ)+sin(θ))D = 2 \sin(9\theta) (\cos(\theta) + \sin(\theta))

Step 3: Evaluate the Expression E Now, substitute the simplified NN and DD back into EE: E=2sin(6θ)(cos(θ)+sin(θ))2sin(9θ)(cos(θ)+sin(θ))E = \frac{2 \sin(6\theta) (\cos(\theta) + \sin(\theta))}{2 \sin(9\theta) (\cos(\theta) + \sin(\theta))} Given θ=π15\theta = \frac{\pi}{15}, cos(θ)+sin(θ)=cos(π15)+sin(π15)\cos(\theta) + \sin(\theta) = \cos(\frac{\pi}{15}) + \sin(\frac{\pi}{15}). Since π15\frac{\pi}{15} is in the first quadrant, both cos(π15)\cos(\frac{\pi}{15}) and sin(π15)\sin(\frac{\pi}{15}) are positive, so their sum is not zero. Therefore, we can cancel the common term (cos(θ)+sin(θ))(\cos(\theta) + \sin(\theta)): E=sin(6θ)sin(9θ)E = \frac{\sin(6\theta)}{\sin(9\theta)}

Step 4: Substitute the value of θ\theta Given θ=π15\theta = \frac{\pi}{15}. Calculate 6θ6\theta and 9θ9\theta: 6θ=6×π15=2π56\theta = 6 \times \frac{\pi}{15} = \frac{2\pi}{5} 9θ=9×π15=3π59\theta = 9 \times \frac{\pi}{15} = \frac{3\pi}{5}

Substitute these values into EE: E=sin(2π5)sin(3π5)E = \frac{\sin(\frac{2\pi}{5})}{\sin(\frac{3\pi}{5})} We know that sin(πx)=sinx\sin(\pi - x) = \sin x. Here, 3π5=π2π5\frac{3\pi}{5} = \pi - \frac{2\pi}{5}. So, sin(3π5)=sin(π2π5)=sin(2π5)\sin(\frac{3\pi}{5}) = \sin(\pi - \frac{2\pi}{5}) = \sin(\frac{2\pi}{5}).

Substitute this back into the expression for EE: E=sin(2π5)sin(2π5)E = \frac{\sin(\frac{2\pi}{5})}{\sin(\frac{2\pi}{5})} Since 2π5=72\frac{2\pi}{5} = 72^\circ, sin(2π5)0\sin(\frac{2\pi}{5}) \neq 0. Therefore, E=1E = 1

The final answer is 1\boxed{1}.

Explanation of the solution:

  1. Simplify Numerator: Group terms (sin5θ+sin7θ)(\sin 5\theta + \sin 7\theta) and (cos5θcos7θ)(\cos 5\theta - \cos 7\theta). Apply sum-to-product formulas sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) and cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right). This yields N=2sin(6θ)(cosθ+sinθ)N = 2 \sin(6\theta)(\cos\theta + \sin\theta).
  2. Simplify Denominator: Similarly, group terms (sin8θ+sin10θ)(\sin 8\theta + \sin 10\theta) and (cos8θcos10θ)(\cos 8\theta - \cos 10\theta). Apply sum-to-product formulas. This yields D=2sin(9θ)(cosθ+sinθ)D = 2 \sin(9\theta)(\cos\theta + \sin\theta).
  3. Simplify Expression: Divide the simplified numerator by the simplified denominator. The common factor 2(cosθ+sinθ)2(\cos\theta + \sin\theta) cancels out, leaving E=sin(6θ)sin(9θ)E = \frac{\sin(6\theta)}{\sin(9\theta)}.
  4. Substitute θ\theta: Substitute θ=π15\theta = \frac{\pi}{15} into the simplified expression. This gives 6θ=2π56\theta = \frac{2\pi}{5} and 9θ=3π59\theta = \frac{3\pi}{5}. So, E=sin(2π5)sin(3π5)E = \frac{\sin(\frac{2\pi}{5})}{\sin(\frac{3\pi}{5})}.
  5. Final Evaluation: Use the identity sin(πx)=sinx\sin(\pi - x) = \sin x. Since 3π5=π2π5\frac{3\pi}{5} = \pi - \frac{2\pi}{5}, we have sin(3π5)=sin(2π5)\sin(\frac{3\pi}{5}) = \sin(\frac{2\pi}{5}). Therefore, E=sin(2π5)sin(2π5)=1E = \frac{\sin(\frac{2\pi}{5})}{\sin(\frac{2\pi}{5})} = 1.