Solveeit Logo

Question

Question: If $I_{m,n} = \int cos^m x sinnx \,dx$, then $7I_{4,3}-4I_{3,2}$ is equal to:...

If Im,n=cosmxsinnxdxI_{m,n} = \int cos^m x sinnx \,dx, then 7I4,34I3,27I_{4,3}-4I_{3,2} is equal to:

Answer

3 cos^5 x - 4 cos^7 x

Explanation

Solution

Let the given integral be Im,n=cosmxsin(nx)dxI_{m,n} = \int \cos^m x \sin(nx) \,dx. We need to evaluate 7I4,34I3,27I_{4,3}-4I_{3,2}.

First, let's write out the terms: I4,3=cos4xsin(3x)dxI_{4,3} = \int \cos^4 x \sin(3x) \,dx I3,2=cos3xsin(2x)dxI_{3,2} = \int \cos^3 x \sin(2x) \,dx

Substitute these into the expression: 7I4,34I3,2=7cos4xsin(3x)dx4cos3xsin(2x)dx7I_{4,3}-4I_{3,2} = 7 \int \cos^4 x \sin(3x) \,dx - 4 \int \cos^3 x \sin(2x) \,dx Combine the integrals: 7I4,34I3,2=(7cos4xsin(3x)4cos3xsin(2x))dx7I_{4,3}-4I_{3,2} = \int (7 \cos^4 x \sin(3x) - 4 \cos^3 x \sin(2x)) \,dx

Now, we use the trigonometric identity for sin(2x)\sin(2x): sin(2x)=2sinxcosx\sin(2x) = 2 \sin x \cos x. Substitute this into the second term of the integrand: 4cos3xsin(2x)=4cos3x(2sinxcosx)=8cos4xsinx4 \cos^3 x \sin(2x) = 4 \cos^3 x (2 \sin x \cos x) = 8 \cos^4 x \sin x.

Substitute this back into the integral: 7I4,34I3,2=(7cos4xsin(3x)8cos4xsinx)dx7I_{4,3}-4I_{3,2} = \int (7 \cos^4 x \sin(3x) - 8 \cos^4 x \sin x) \,dx Factor out cos4x\cos^4 x: 7I4,34I3,2=cos4x(7sin(3x)8sinx)dx7I_{4,3}-4I_{3,2} = \int \cos^4 x (7 \sin(3x) - 8 \sin x) \,dx

Now, use the triple angle identity for sin(3x)\sin(3x): sin(3x)=3sinx4sin3x\sin(3x) = 3 \sin x - 4 \sin^3 x. Substitute this into the expression in the parenthesis: 7sin(3x)8sinx=7(3sinx4sin3x)8sinx7 \sin(3x) - 8 \sin x = 7(3 \sin x - 4 \sin^3 x) - 8 \sin x =21sinx28sin3x8sinx= 21 \sin x - 28 \sin^3 x - 8 \sin x =13sinx28sin3x= 13 \sin x - 28 \sin^3 x.

Substitute this back into the integral: 7I4,34I3,2=cos4x(13sinx28sin3x)dx7I_{4,3}-4I_{3,2} = \int \cos^4 x (13 \sin x - 28 \sin^3 x) \,dx Distribute cos4x\cos^4 x: 7I4,34I3,2=(13cos4xsinx28cos4xsin3x)dx7I_{4,3}-4I_{3,2} = \int (13 \cos^4 x \sin x - 28 \cos^4 x \sin^3 x) \,dx

Now, we can express sin3x\sin^3 x in terms of sinx\sin x and cosx\cos x: sin3x=sinxsin2x=sinx(1cos2x)\sin^3 x = \sin x \sin^2 x = \sin x (1 - \cos^2 x). Substitute this into the second term: 28cos4xsin3x=28cos4xsinx(1cos2x)28 \cos^4 x \sin^3 x = 28 \cos^4 x \sin x (1 - \cos^2 x) =28cos4xsinx28cos6xsinx= 28 \cos^4 x \sin x - 28 \cos^6 x \sin x.

Substitute this back into the integral: 7I4,34I3,2=(13cos4xsinx(28cos4xsinx28cos6xsinx))dx7I_{4,3}-4I_{3,2} = \int (13 \cos^4 x \sin x - (28 \cos^4 x \sin x - 28 \cos^6 x \sin x)) \,dx 7I4,34I3,2=(13cos4xsinx28cos4xsinx+28cos6xsinx)dx7I_{4,3}-4I_{3,2} = \int (13 \cos^4 x \sin x - 28 \cos^4 x \sin x + 28 \cos^6 x \sin x) \,dx 7I4,34I3,2=(15cos4xsinx+28cos6xsinx)dx7I_{4,3}-4I_{3,2} = \int (-15 \cos^4 x \sin x + 28 \cos^6 x \sin x) \,dx

Now, perform the integration. Let u=cosxu = \cos x, then du=sinxdxdu = -\sin x \,dx, so sinxdx=du\sin x \,dx = -du. The integral becomes: (15u4(du)+28u6(du))\int (-15 u^4 (-du) + 28 u^6 (-du)) =(15u428u6)du= \int (15 u^4 - 28 u^6) \,du Integrate term by term: =15u4+14+128u6+16+1+C= 15 \frac{u^{4+1}}{4+1} - 28 \frac{u^{6+1}}{6+1} + C =15u5528u77+C= 15 \frac{u^5}{5} - 28 \frac{u^7}{7} + C =3u54u7+C= 3 u^5 - 4 u^7 + C

Substitute back u=cosxu = \cos x: 7I4,34I3,2=3cos5x4cos7x+C7I_{4,3}-4I_{3,2} = 3 \cos^5 x - 4 \cos^7 x + C.

The options provided are functions of xx, implying the constant of integration is omitted or assumed to be zero.

The final answer is 3cos5x4cos7x3 \cos^5 x - 4 \cos^7 x.