Question
Question: If $I_{m,n} = \int cos^m x sinnx \,dx$, then $7I_{4,3}-4I_{3,2}$ is equal to:...
If Im,n=∫cosmxsinnxdx, then 7I4,3−4I3,2 is equal to:

3 cos^5 x - 4 cos^7 x
Solution
Let the given integral be Im,n=∫cosmxsin(nx)dx. We need to evaluate 7I4,3−4I3,2.
First, let's write out the terms: I4,3=∫cos4xsin(3x)dx I3,2=∫cos3xsin(2x)dx
Substitute these into the expression: 7I4,3−4I3,2=7∫cos4xsin(3x)dx−4∫cos3xsin(2x)dx Combine the integrals: 7I4,3−4I3,2=∫(7cos4xsin(3x)−4cos3xsin(2x))dx
Now, we use the trigonometric identity for sin(2x): sin(2x)=2sinxcosx. Substitute this into the second term of the integrand: 4cos3xsin(2x)=4cos3x(2sinxcosx)=8cos4xsinx.
Substitute this back into the integral: 7I4,3−4I3,2=∫(7cos4xsin(3x)−8cos4xsinx)dx Factor out cos4x: 7I4,3−4I3,2=∫cos4x(7sin(3x)−8sinx)dx
Now, use the triple angle identity for sin(3x): sin(3x)=3sinx−4sin3x. Substitute this into the expression in the parenthesis: 7sin(3x)−8sinx=7(3sinx−4sin3x)−8sinx =21sinx−28sin3x−8sinx =13sinx−28sin3x.
Substitute this back into the integral: 7I4,3−4I3,2=∫cos4x(13sinx−28sin3x)dx Distribute cos4x: 7I4,3−4I3,2=∫(13cos4xsinx−28cos4xsin3x)dx
Now, we can express sin3x in terms of sinx and cosx: sin3x=sinxsin2x=sinx(1−cos2x). Substitute this into the second term: 28cos4xsin3x=28cos4xsinx(1−cos2x) =28cos4xsinx−28cos6xsinx.
Substitute this back into the integral: 7I4,3−4I3,2=∫(13cos4xsinx−(28cos4xsinx−28cos6xsinx))dx 7I4,3−4I3,2=∫(13cos4xsinx−28cos4xsinx+28cos6xsinx)dx 7I4,3−4I3,2=∫(−15cos4xsinx+28cos6xsinx)dx
Now, perform the integration. Let u=cosx, then du=−sinxdx, so sinxdx=−du. The integral becomes: ∫(−15u4(−du)+28u6(−du)) =∫(15u4−28u6)du Integrate term by term: =154+1u4+1−286+1u6+1+C =155u5−287u7+C =3u5−4u7+C
Substitute back u=cosx: 7I4,3−4I3,2=3cos5x−4cos7x+C.
The options provided are functions of x, implying the constant of integration is omitted or assumed to be zero.
The final answer is 3cos5x−4cos7x.