Solveeit Logo

Question

Question: If a number of liquid droplets each of radius(r) coalesce to form a single drop of radius (R), then ...

If a number of liquid droplets each of radius(r) coalesce to form a single drop of radius (R), then find the rise in temperature of the liquid in terms of the surface tension (T), density (ρ) and specific heat capacity (c) of the liquid.

Answer

ΔT=3Tρc(1r1R)\Delta T = \frac{3T}{\rho c} \left(\frac{1}{r} - \frac{1}{R}\right)

Explanation

Solution

Let nn be the number of small droplets of radius rr coalescing into a single large droplet of radius RR. By conservation of volume: n43πr3=43πR3n=(Rr)3n \cdot \frac{4}{3}\pi r^3 = \frac{4}{3}\pi R^3 \Rightarrow n = \left(\frac{R}{r}\right)^3

The decrease in surface area is: ΔA=n4πr24πR2=(Rr)34πr24πR2=4πR3r4πR2=4πR3(1r1R)\Delta A = n \cdot 4\pi r^2 - 4\pi R^2 = \left(\frac{R}{r}\right)^3 \cdot 4\pi r^2 - 4\pi R^2 = \frac{4\pi R^3}{r} - 4\pi R^2 = 4\pi R^3 \left(\frac{1}{r} - \frac{1}{R}\right)

The surface energy released is W=TΔA=T4πR3(1r1R)W = T \cdot \Delta A = T \cdot 4\pi R^3 \left(\frac{1}{r} - \frac{1}{R}\right). This energy is converted into heat Q=mcΔTQ = m \cdot c \cdot \Delta T. The mass of the liquid is m=ρVfinal=ρ43πR3m = \rho \cdot V_{final} = \rho \cdot \frac{4}{3}\pi R^3. So, Q=ρ43πR3cΔTQ = \rho \cdot \frac{4}{3}\pi R^3 \cdot c \cdot \Delta T.

Equating WW and QQ: T4πR3(1r1R)=ρ43πR3cΔTT \cdot 4\pi R^3 \left(\frac{1}{r} - \frac{1}{R}\right) = \rho \cdot \frac{4}{3}\pi R^3 \cdot c \cdot \Delta T ΔT=3Tρc(1r1R)\Delta T = \frac{3T}{\rho c} \left(\frac{1}{r} - \frac{1}{R}\right)