Solveeit Logo

Question

Question: H₂ gas is kept inside a container A and container B each having volume 2 litre under different c whi...

H₂ gas is kept inside a container A and container B each having volume 2 litre under different c which are described below. Determining the missing values with proper unit. [R = 8 J mol⁻¹ K⁻¹ and Nᴀ = 6 x 10²³, N = No. of molecules]

Answer

(i) 1200Pa1200 \, \text{Pa}, (ii) 2.533×10222.533 \times 10^{22}, (iii) 3600J3600 \, \text{J}, (iv) 303.975J303.975 \, \text{J}, (v) 1897.37m/s1897.37 \, \text{m/s}, (vi) 1549.19m/s1549.19 \, \text{m/s}

Explanation

Solution

  1. Calculated moles for Container A (nAn_A) from given molecules (NAN_A) and Avogadro's number (NAN_A): nA=6×10206×1023=1×103moln_A = \frac{6 \times 10^{20}}{6 \times 10^{23}} = 1 \times 10^{-3} \, \text{mol}.
  2. Used Ideal Gas Law (PV=nRTPV=nRT) to find Pressure for Container A (PAP_A): PA=nARTAV=(1×103)×8×3002×103=1200PaP_A = \frac{n_A R T_A}{V} = \frac{(1 \times 10^{-3}) \times 8 \times 300}{2 \times 10^{-3}} = 1200 \, \text{Pa}. This is (i).
  3. Calculated Total Average Kinetic Energy for Container A (KEavg,AKE_{avg, A}) using KEavg=32nRTKE_{avg} = \frac{3}{2}nRT: KEavg,A=32×(1×103)×8×300=3600JKE_{avg, A} = \frac{3}{2} \times (1 \times 10^{-3}) \times 8 \times 300 = 3600 \, \text{J}. This is (iii).
  4. Calculated Root Mean Square Speed for Container A (Urms,AU_{rms, A}) using Urms=3RTMU_{rms} = \sqrt{\frac{3RT}{M}} (Molar mass of H₂ = 2 g/mol = 2×1032 \times 10^{-3} kg/mol): Urms,A=3×8×3002×103=3.6×1061897.37m/sU_{rms, A} = \sqrt{\frac{3 \times 8 \times 300}{2 \times 10^{-3}}} = \sqrt{3.6 \times 10^6} \approx 1897.37 \, \text{m/s}. This is (v).
  5. Calculated Most Probable Speed for Container A (Z1,AZ_{1, A}) using Z1=2RTMZ_1 = \sqrt{\frac{2RT}{M}}: Z1,A=2×8×3002×103=2.4×1061549.19m/sZ_{1, A} = \sqrt{\frac{2 \times 8 \times 300}{2 \times 10^{-3}}} = \sqrt{2.4 \times 10^6} \approx 1549.19 \, \text{m/s}. This is (vi).
  6. Calculated moles for Container B (nBn_B) from given pressure (PB=1atm=101325PaP_B = 1 \, \text{atm} = 101325 \, \text{Pa}), volume (V=2×103m3V = 2 \times 10^{-3} \, \text{m}^3), and temperature (TB=600KT_B = 600 \, \text{K}) using Ideal Gas Law: nB=PBVRTB=101325×2×1038×6000.0422moln_B = \frac{P_B V}{R T_B} = \frac{101325 \times 2 \times 10^{-3}}{8 \times 600} \approx 0.0422 \, \text{mol}.
  7. Calculated Number of Molecules for Container B (NBN_B) from moles (nBn_B) and Avogadro's number (NAN_A): NB=nB×NA=0.0422×6×10232.533×1022N_B = n_B \times N_A = 0.0422 \times 6 \times 10^{23} \approx 2.533 \times 10^{22}. This is (ii).
  8. Calculated Total Average Kinetic Energy for Container B (KEavg,BKE_{avg, B}) using KEavg=32nRTKE_{avg} = \frac{3}{2}nRT: KEavg,B=32×0.0422×8×600303.975JKE_{avg, B} = \frac{3}{2} \times 0.0422 \times 8 \times 600 \approx 303.975 \, \text{J}. This is (iv).
  9. The value "0.7" in the table for Container B under "Ratio U_rms" is interpreted as the ratio Urms,AUrms,B\frac{U_{rms, A}}{U_{rms, B}}, as TATB=300600=0.50.707\sqrt{\frac{T_A}{T_B}} = \sqrt{\frac{300}{600}} = \sqrt{0.5} \approx 0.707. The direct calculation of Urms,BU_{rms, B} would be 3×8×6002×1032683.3m/s\sqrt{\frac{3 \times 8 \times 600}{2 \times 10^{-3}}} \approx 2683.3 \, \text{m/s}, which is not represented by 0.7.