Question
Question: Find the value of $\sum_{k=1}^{\infty} \frac{k^2}{2^k}$...
Find the value of ∑k=1∞2kk2

Answer
6
Explanation
Solution
Let the sum be S. This is an Arithmetico-Geometric Progression (AGP) sum.
We know the sum of an infinite geometric series for ∣r∣<1:
k=0∑∞rk=1−r1Differentiate with respect to r:
k=1∑∞krk−1=(1−r)21Multiply by r:
k=1∑∞krk=(1−r)2r(∗)Differentiate (∗) with respect to r:
k=1∑∞k2rk−1=drd((1−r)2r)Using the quotient rule drd(vu)=v2u′v−uv′:
drd((1−r)2r)=((1−r)2)21⋅(1−r)2−r⋅2(1−r)(−1) =(1−r)4(1−r)2+2r(1−r)=(1−r)4(1−r)(1−r+2r) =(1−r)31+rSo, we have:
k=1∑∞k2rk−1=(1−r)31+rTo get ∑k=1∞k2rk, multiply by r:
k=1∑∞k2rk=(1−r)3r(1+r)In this problem, r=21. Substitute r=21 into the formula:
S=(1−21)321(1+21)=(21)321⋅23 S=8143=43×8=6