Solveeit Logo

Question

Question: Find the value of $\sum_{k=1}^{\infty} \frac{k^2}{2^k}$...

Find the value of k=1k22k\sum_{k=1}^{\infty} \frac{k^2}{2^k}

Answer

6

Explanation

Solution

Let the sum be SS. This is an Arithmetico-Geometric Progression (AGP) sum.

We know the sum of an infinite geometric series for r<1|r|<1:

k=0rk=11r\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}

Differentiate with respect to rr:

k=1krk1=1(1r)2\sum_{k=1}^{\infty} k r^{k-1} = \frac{1}{(1-r)^2}

Multiply by rr:

k=1krk=r(1r)2()\sum_{k=1}^{\infty} k r^k = \frac{r}{(1-r)^2} \quad (*)

Differentiate ()(*) with respect to rr:

k=1k2rk1=ddr(r(1r)2)\sum_{k=1}^{\infty} k^2 r^{k-1} = \frac{d}{dr}\left(\frac{r}{(1-r)^2}\right)

Using the quotient rule ddr(uv)=uvuvv2\frac{d}{dr}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}:

ddr(r(1r)2)=1(1r)2r2(1r)(1)((1r)2)2\frac{d}{dr}\left(\frac{r}{(1-r)^2}\right) = \frac{1 \cdot (1-r)^2 - r \cdot 2(1-r)(-1)}{((1-r)^2)^2} =(1r)2+2r(1r)(1r)4=(1r)(1r+2r)(1r)4= \frac{(1-r)^2 + 2r(1-r)}{(1-r)^4} = \frac{(1-r)(1-r+2r)}{(1-r)^4} =1+r(1r)3= \frac{1+r}{(1-r)^3}

So, we have:

k=1k2rk1=1+r(1r)3\sum_{k=1}^{\infty} k^2 r^{k-1} = \frac{1+r}{(1-r)^3}

To get k=1k2rk\sum_{k=1}^{\infty} k^2 r^k, multiply by rr:

k=1k2rk=r(1+r)(1r)3\sum_{k=1}^{\infty} k^2 r^k = \frac{r(1+r)}{(1-r)^3}

In this problem, r=12r = \frac{1}{2}. Substitute r=12r=\frac{1}{2} into the formula:

S=12(1+12)(112)3=1232(12)3S = \frac{\frac{1}{2}\left(1+\frac{1}{2}\right)}{\left(1-\frac{1}{2}\right)^3} = \frac{\frac{1}{2} \cdot \frac{3}{2}}{\left(\frac{1}{2}\right)^3} S=3418=34×8=6S = \frac{\frac{3}{4}}{\frac{1}{8}} = \frac{3}{4} \times 8 = 6