Solveeit Logo

Question

Question: Find the largest integral value of 'a' for which every solution of the equation $x([x] - 5) + 2\{x\}...

Find the largest integral value of 'a' for which every solution of the equation x([x]5)+2{x}+6=0x([x] - 5) + 2\{x\}+6=0 satisfies the inequality (a3)x2+2(a+3)x8a0(a – 3) x² + 2 (a+3) x-8a ≤ 0, where

A

1

B

2

C

3

D

4

Answer

1

Explanation

Solution

Let x=n+{x}x = n + \{x\}, where n=[x]n = [x] is an integer and 0{x}<10 \le \{x\} < 1. The equation is x([x]5)+2{x}+6=0x([x] - 5) + 2\{x\} + 6 = 0. Substituting x=n+{x}x = n + \{x\}: (n+{x})(n5)+2{x}+6=0(n + \{x\})(n - 5) + 2\{x\} + 6 = 0 n25n+n{x}5{x}+2{x}+6=0n^2 - 5n + n\{x\} - 5\{x\} + 2\{x\} + 6 = 0 n25n+6+{x}(n3)=0n^2 - 5n + 6 + \{x\}(n - 3) = 0

Case 1: n30n - 3 \neq 0 (i.e., n3n \neq 3) {x}(n3)=(n25n+6)=(n2)(n3)\{x\}(n - 3) = -(n^2 - 5n + 6) = -(n-2)(n-3) Since n3n \neq 3, we can divide by (n3)(n-3): {x}=(n2)=2n\{x\} = -(n-2) = 2 - n We know 0{x}<10 \le \{x\} < 1, so 02n<10 \le 2 - n < 1. Subtracting 2: 2n<1-2 \le -n < -1. Multiplying by -1 and reversing inequalities: 1<n21 < n \le 2. Since nn is an integer, n=2n=2. If n=2n=2, then {x}=22=0\{x\} = 2 - 2 = 0. The solution is x=n+{x}=2+0=2x = n + \{x\} = 2 + 0 = 2.

Case 2: n3=0n - 3 = 0 (i.e., n=3n = 3) The equation becomes 325(3)+6+{x}(0)=03^2 - 5(3) + 6 + \{x\}(0) = 0. 915+6=09 - 15 + 6 = 0, which is 0=00 = 0. This means for n=3n=3, any valid {x}\{x\} works. So, x=n+{x}=3+{x}x = n + \{x\} = 3 + \{x\}, where 0{x}<10 \le \{x\} < 1. This gives the interval x[3,4)x \in [3, 4).

The solutions to the equation are x=2x=2 and x[3,4)x \in [3, 4).

Now consider the inequality (a3)x2+2(a+3)x8a0(a – 3) x² + 2 (a+3) x-8a ≤ 0. Let f(x)=(a3)x2+2(a+3)x8af(x) = (a – 3) x² + 2 (a+3) x-8a.

Subcase 2.1: a3=0a - 3 = 0 (i.e., a=3a = 3) The inequality becomes 0x2+2(3+3)x8(3)00x^2 + 2(3+3)x - 8(3) \le 0, which is 12x24012x - 24 \le 0, or x2x \le 2. The solutions are x=2x=2 and x[3,4)x \in [3, 4). x=2x=2 satisfies x2x \le 2. However, for x[3,4)x \in [3, 4), the condition x2x \le 2 is not satisfied. So a=3a=3 is not valid.

Subcase 2.2: a3>0a - 3 > 0 (i.e., a>3a > 3) The parabola f(x)f(x) opens upwards. For f(x)0f(x) \le 0, xx must be between the roots. Let's check if x=2x=2 is a root of f(x)=0f(x)=0: f(2)=(a3)(22)+2(a+3)(2)8a=4(a3)+4(a+3)8a=4a12+4a+128a=0f(2) = (a-3)(2^2) + 2(a+3)(2) - 8a = 4(a-3) + 4(a+3) - 8a = 4a - 12 + 4a + 12 - 8a = 0. So x=2x=2 is a root. Let the other root be r2r_2. Sum of roots: 2+r2=2(a+3)a32 + r_2 = -\frac{2(a+3)}{a-3}. r2=2(a+3)a32=2a62(a3)a3=4aa3r_2 = -\frac{2(a+3)}{a-3} - 2 = \frac{-2a-6 - 2(a-3)}{a-3} = \frac{-4a}{a-3}. For a>3a > 3, a3>0a-3 > 0, so r2=4aa3r_2 = \frac{-4a}{a-3} is negative. The roots are r2r_2 (negative) and 22. f(x)0f(x) \le 0 for x[r2,2]x \in [r_2, 2]. We need {2}[3,4)[r2,2]\{2\} \cup [3, 4) \subseteq [r_2, 2]. This requires [3,4)[r2,2][3, 4) \subseteq [r_2, 2], which is impossible since 3>23 > 2. So no solutions for a>3a > 3.

Subcase 2.3: a3<0a - 3 < 0 (i.e., a<3a < 3) The parabola f(x)f(x) opens downwards. f(x)0f(x) \le 0 for xx outside the roots. The roots are 22 and r2=4aa3r_2 = \frac{-4a}{a-3}. We need to compare r2r_2 with 22. 4aa3>2    4a2(a3)a3>0    6a+6a3>0    6(1a)a3>0\frac{-4a}{a-3} > 2 \iff \frac{-4a - 2(a-3)}{a-3} > 0 \iff \frac{-6a+6}{a-3} > 0 \iff \frac{6(1-a)}{a-3} > 0. Since a<3a < 3, a3<0a-3 < 0. For the fraction to be positive, 6(1a)6(1-a) must be negative. 6(1a)<0    1a<0    a>16(1-a) < 0 \implies 1-a < 0 \implies a > 1. So, if 1<a<31 < a < 3, then r2>2r_2 > 2. The roots are 22 and r2r_2. f(x)0f(x) \le 0 for x2x \le 2 or xr2x \ge r_2. We need {2}[3,4)(,2][r2,)\{2\} \cup [3, 4) \subseteq (-\infty, 2] \cup [r_2, \infty). x=2x=2 is covered. For x[3,4)x \in [3, 4), we need x2x \le 2 or xr2x \ge r_2. Since 3>23 > 2, we must have xr2x \ge r_2. This requires [3,4)[r2,)[3, 4) \subseteq [r_2, \infty), so r23r_2 \le 3. 4aa33\frac{-4a}{a-3} \le 3. Since a<3a < 3, a3<0a-3 < 0. Multiply by a3a-3 and reverse inequality: 4a3(a3)    4a3a9    97a    a97-4a \ge 3(a-3) \implies -4a \ge 3a - 9 \implies 9 \ge 7a \implies a \le \frac{9}{7}. So, for 1<a<31 < a < 3, we need a97a \le \frac{9}{7}. This gives the range 1<a971 < a \le \frac{9}{7}.

If a1a \le 1: Then a<1a < 1. This implies 1a>01-a > 0. Since a<3a < 3, a3<0a-3 < 0. 6(1a)a3<0\frac{6(1-a)}{a-3} < 0, so r2<2r_2 < 2. The roots are r2r_2 (negative) and 22. f(x)0f(x) \le 0 for xr2x \le r_2 or x2x \ge 2. We need {2}[3,4)(,r2][2,)\{2\} \cup [3, 4) \subseteq (-\infty, r_2] \cup [2, \infty). x=2x=2 is covered. For x[3,4)x \in [3, 4), we need xr2x \le r_2 or x2x \ge 2. Since 3>23 > 2, the condition x2x \ge 2 is satisfied. So, all a1a \le 1 are valid.

Combining the valid ranges for a<3a < 3: a1a \le 1 and 1<a971 < a \le \frac{9}{7}. The union is a97a \le \frac{9}{7}. We need the largest integral value of 'a'. Since 971.28\frac{9}{7} \approx 1.28, the largest integer less than or equal to 97\frac{9}{7} is 11.

The largest integral value of 'a' is 1.