Solveeit Logo

Question

Question: $\triangle$ABC is obtuse angled at B and points D and E are taken on sides AC and BC respectively su...

\triangleABC is obtuse angled at B and points D and E are taken on sides AC and BC respectively such that

AD: DC = 2 : 3 and BE : EC = 1 : 2. If DE produced meet AB produced at F, then -

A

AF : BF = 4 : 3

B

AF : BF = 3 : 1

C

DE : EF = 1 : 5

D

DE : EF = 3 : 4

Answer

(A), (C)

Explanation

Solution

Let the vertices of the triangle be A, B, and C. Let B be the origin, so B=0\vec{B} = \mathbf{0}. Let A=a\vec{A} = \mathbf{a} and C=c\vec{C} = \mathbf{c}.

Point D is on AC such that AD:DC = 2:3. Using the section formula, the position vector of D is D=3A+2C3+2=3a+2c5\vec{D} = \frac{3\vec{A} + 2\vec{C}}{3+2} = \frac{3\mathbf{a} + 2\mathbf{c}}{5}.

Point E is on BC such that BE:EC = 1:2. Since B is the origin, BE=13BC\vec{BE} = \frac{1}{3}\vec{BC}. So, the position vector of E is E=13C=13c\vec{E} = \frac{1}{3}\vec{C} = \frac{1}{3}\mathbf{c}.

The line segment DE is produced to meet AB produced at F. This means F lies on the line DE and also on the line AB. Since F lies on the line DE, its position vector F\vec{F} can be expressed as a linear combination of D\vec{D} and E\vec{E}:

F=(1s)D+sE\vec{F} = (1-s)\vec{D} + s\vec{E} for some scalar s.

Substitute the expressions for D\vec{D} and E\vec{E}:

F=(1s)(3a+2c5)+s(13c)\vec{F} = (1-s)\left(\frac{3\mathbf{a} + 2\mathbf{c}}{5}\right) + s\left(\frac{1}{3}\mathbf{c}\right)

F=3(1s)5a+2(1s)5c+s3c\vec{F} = \frac{3(1-s)}{5}\mathbf{a} + \frac{2(1-s)}{5}\mathbf{c} + \frac{s}{3}\mathbf{c}

F=3(1s)5a+(2(1s)5+s3)c\vec{F} = \frac{3(1-s)}{5}\mathbf{a} + \left(\frac{2(1-s)}{5} + \frac{s}{3}\right)\mathbf{c}

F=3(1s)5a+6s15c\vec{F} = \frac{3(1-s)}{5}\mathbf{a} + \frac{6-s}{15}\mathbf{c}

Since F lies on the line AB produced, F lies on the line passing through B (origin) and A (vector a\mathbf{a}). Thus, F\vec{F} must be a multiple of A\vec{A} (vector a\mathbf{a}).

F=ka\vec{F} = k\mathbf{a} for some scalar k.

Comparing the two expressions for F\vec{F}:

ka=3(1s)5a+6s15ck\mathbf{a} = \frac{3(1-s)}{5}\mathbf{a} + \frac{6-s}{15}\mathbf{c}

Since a\mathbf{a} and c\mathbf{c} are not parallel (as they form a triangle), the coefficients of a\mathbf{a} and c\mathbf{c} on both sides must be equal.

Coefficient of c\mathbf{c}: 0=6s15    s=60 = \frac{6-s}{15} \implies s = 6.

Coefficient of a\mathbf{a}: k=3(1s)5=3(16)5=3(5)5=3k = \frac{3(1-s)}{5} = \frac{3(1-6)}{5} = \frac{3(-5)}{5} = -3.

So, F=3a\vec{F} = -3\mathbf{a}.

Since A=a\vec{A} = \mathbf{a} and B=0\vec{B} = \mathbf{0}, BA=AB=a\vec{BA} = \vec{A} - \vec{B} = \mathbf{a}.

BF=FB=3a0=3a\vec{BF} = \vec{F} - \vec{B} = -3\mathbf{a} - \mathbf{0} = -3\mathbf{a}.

So, BF=3BA\vec{BF} = -3\vec{BA}.

Since BA=AB\vec{BA} = -\vec{AB}, we have BF=3(AB)=3AB\vec{BF} = -3(-\vec{AB}) = 3\vec{AB}.

This implies that F is on the line AB and BF\vec{BF} is in the same direction as AB\vec{AB}. The order of points must be B, A, F.

The magnitudes are related by BF=3ABBF = 3 AB.

Since B, A, F are collinear in that order, BF=BA+AFBF = BA + AF.

3AB=AB+AF3 AB = AB + AF.

AF=3ABAB=2ABAF = 3 AB - AB = 2 AB.

The ratio AF : BF = 2AB:3AB=2:32 AB : 3 AB = 2 : 3.

Let's recheck the Menelaus' theorem application.

Consider \triangleABC and the transversal line FDE. The line intersects AB produced at F, BC at E, and AC at D.

According to Menelaus' Theorem:

(AFFB)(BEEC)(CDDA)=1(\frac{AF}{FB}) \cdot (\frac{BE}{EC}) \cdot (\frac{CD}{DA}) = 1.

We are given BE:EC = 1:2, so BEEC=12\frac{BE}{EC} = \frac{1}{2}.

We are given AD:DC = 2:3, so ADDC=23\frac{AD}{DC} = \frac{2}{3}. This means CDDA=32\frac{CD}{DA} = \frac{3}{2}.

Substitute these values into the Menelaus' equation:

(AFFB)(12)(32)=1(\frac{AF}{FB}) \cdot (\frac{1}{2}) \cdot (\frac{3}{2}) = 1

(AFFB)34=1(\frac{AF}{FB}) \cdot \frac{3}{4} = 1

AFFB=43\frac{AF}{FB} = \frac{4}{3}.

So, AF : BF = 4 : 3. This matches option (A).

Now let's find the ratio DE : EF.

We used the scalar s=6s=6 in the equation F=(1s)D+sE\vec{F} = (1-s)\vec{D} + s\vec{E}.

F=(16)D+6E\vec{F} = (1-6)\vec{D} + 6\vec{E}

F=5D+6E\vec{F} = -5\vec{D} + 6\vec{E}.

Rearranging this equation to relate vectors from E:

FE=5D+6EE\vec{F} - \vec{E} = -5\vec{D} + 6\vec{E} - \vec{E}

EF=5D+5E\vec{EF} = -5\vec{D} + 5\vec{E}

EF=5(DE)\vec{EF} = -5(\vec{D} - \vec{E})

EF=5ED\vec{EF} = -5\vec{ED}.

This equation shows that the vector EF\vec{EF} is 5 times the magnitude of the vector ED\vec{ED} and points in the opposite direction.

Since EF\vec{EF} and ED\vec{ED} are opposite, E must lie between D and F.

The order of points is D, E, F.

The magnitude relation is EF=5EDEF = 5 ED.

The ratio DE : EF = ED : EF = ED:5ED=1:5ED : 5 ED = 1 : 5.

This matches option (C).

Let's verify the order of points D, E, F using the scalar s.

F=(1s)D+sE\vec{F} = (1-s)\vec{D} + s\vec{E}. If 0<s<10 < s < 1, E is between D and F. If s<0s < 0, D is between E and F. If s>1s > 1, E is between D and F.

The line segment DE is produced to F. This means E is between D and F or D is between E and F.

The equation F=(1s)D+sE\vec{F} = (1-s)\vec{D} + s\vec{E} implies that F lies on the line passing through D and E.

We found s=6s=6.

F=(16)D+6E=5D+6E\vec{F} = (1-6)\vec{D} + 6\vec{E} = -5\vec{D} + 6\vec{E}.

Consider the vector DF\vec{DF}. DF=FD=(5D+6E)D=6D+6E=6(ED)=6DE\vec{DF} = \vec{F} - \vec{D} = (-5\vec{D} + 6\vec{E}) - \vec{D} = -6\vec{D} + 6\vec{E} = 6(\vec{E} - \vec{D}) = 6\vec{DE}.

This means the vector DF\vec{DF} is 6 times the vector DE\vec{DE} and in the same direction.

The points D, E, F are collinear and ordered as D, E, F.

DF=6DEDF = 6 DE.

Since D, E, F are in order, DF=DE+EFDF = DE + EF.

6DE=DE+EF6 DE = DE + EF.

EF=6DEDE=5DEEF = 6 DE - DE = 5 DE.

The ratio DE : EF = DE : 5 DE = 1 : 5.

This confirms option (C).