Solveeit Logo

Question

Question: The value of the integral $\int_{0}^{\infty} \frac{x-1}{x^8-1} dx$ is...

The value of the integral 0x1x81dx\int_{0}^{\infty} \frac{x-1}{x^8-1} dx is

Answer

π28\frac{\pi\sqrt{2}}{8}

Explanation

Solution

The integral to evaluate is I=0x1x81dxI = \int_{0}^{\infty} \frac{x-1}{x^8-1} dx.

  1. Simplify the integrand: The denominator can be factored as x81=(x1)(x7+x6+x5+x4+x3+x2+x+1)x^8-1 = (x-1)(x^7+x^6+x^5+x^4+x^3+x^2+x+1). For x1x \neq 1, we can cancel (x1)(x-1) from the numerator and denominator: x1x81=1x7+x6+x5+x4+x3+x2+x+1\frac{x-1}{x^8-1} = \frac{1}{x^7+x^6+x^5+x^4+x^3+x^2+x+1}. The singularity at x=1x=1 is removable, so the integral can be evaluated using the simplified form.

  2. Apply a known integral identity: The integral is of the form 0xaxbxn1dx\int_{0}^{\infty} \frac{x^a - x^b}{x^n - 1} dx. For this type of integral, when the singularity at x=1x=1 is removable (i.e., xaxbx^a-x^b has a root at x=1x=1), the value is given by the formula: 0xaxbxn1dx=πn(cot((b+1)πn)cot((a+1)πn))\int_{0}^{\infty} \frac{x^a - x^b}{x^n - 1} dx = \frac{\pi}{n} \left( \cot\left(\frac{(b+1)\pi}{n}\right) - \cot\left(\frac{(a+1)\pi}{n}\right) \right), provided that 1<a,b<n1-1 < a, b < n-1.

  3. Identify parameters: In our integral, x1x81\frac{x-1}{x^8-1}: a=1a = 1 (power of xx in the first term of the numerator) b=0b = 0 (power of xx in the second term of the numerator, as 1=x01 = x^0) n=8n = 8 (power in the denominator). All conditions are met: 1<0,1<7-1 < 0, 1 < 7.

  4. Substitute values into the formula: I=π8(cot((0+1)π8)cot((1+1)π8))I = \frac{\pi}{8} \left( \cot\left(\frac{(0+1)\pi}{8}\right) - \cot\left(\frac{(1+1)\pi}{8}\right) \right) I=π8(cot(π8)cot(2π8))I = \frac{\pi}{8} \left( \cot\left(\frac{\pi}{8}\right) - \cot\left(\frac{2\pi}{8}\right) \right) I=π8(cot(π8)cot(π4))I = \frac{\pi}{8} \left( \cot\left(\frac{\pi}{8}\right) - \cot\left(\frac{\pi}{4}\right) \right).

  5. Evaluate cotangent terms: We know cot(π4)=1\cot\left(\frac{\pi}{4}\right) = 1. For cot(π8)\cot\left(\frac{\pi}{8}\right), use the half-angle identity cot(θ)=1+cos(2θ)sin(2θ)\cot(\theta) = \frac{1+\cos(2\theta)}{\sin(2\theta)}. Let 2θ=π42\theta = \frac{\pi}{4}, so θ=π8\theta = \frac{\pi}{8}. cot(π8)=1+cos(π4)sin(π4)=1+2222=2+22=2+1\cot\left(\frac{\pi}{8}\right) = \frac{1+\cos(\frac{\pi}{4})}{\sin(\frac{\pi}{4})} = \frac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = \frac{2+\sqrt{2}}{\sqrt{2}} = \sqrt{2}+1.

  6. Calculate the final value: I=π8((2+1)1)I = \frac{\pi}{8} ((\sqrt{2}+1) - 1) I=π8(2)I = \frac{\pi}{8} (\sqrt{2}) I=π28I = \frac{\pi\sqrt{2}}{8}.

The final answer is π28\frac{\pi\sqrt{2}}{8}.