Solveeit Logo

Question

Question: The sum to infinity of the series $\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}$ +...... is equal to -...

The sum to infinity of the series 11+11+2+11+2+3\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3} +...... is equal to -

A

2

B

5/2

C

3

D

none of these

Answer

2

Explanation

Solution

The given series is 11+11+2+11+2+3\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3} +......

First, let's find the general term of the series, TnT_n. The denominator of the nn-th term is the sum of the first nn natural numbers, which is given by the formula k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.

So, the nn-th term of the series is: Tn=1n(n+1)2=2n(n+1)T_n = \frac{1}{\frac{n(n+1)}{2}} = \frac{2}{n(n+1)}

To find the sum to infinity, we need to evaluate S=n=1TnS_\infty = \sum_{n=1}^{\infty} T_n. We can express TnT_n using partial fraction decomposition: Tn=2n(n+1)=2(1n1n+1)T_n = \frac{2}{n(n+1)} = 2 \left( \frac{1}{n} - \frac{1}{n+1} \right)

Now, let's write out the partial sum SN=n=1NTnS_N = \sum_{n=1}^{N} T_n: SN=n=1N2(1n1n+1)S_N = \sum_{n=1}^{N} 2 \left( \frac{1}{n} - \frac{1}{n+1} \right) SN=2[(1111+1)+(1212+1)+(1313+1)++(1N1N+1)]S_N = 2 \left[ \left( \frac{1}{1} - \frac{1}{1+1} \right) + \left( \frac{1}{2} - \frac{1}{2+1} \right) + \left( \frac{1}{3} - \frac{1}{3+1} \right) + \dots + \left( \frac{1}{N} - \frac{1}{N+1} \right) \right] SN=2[(112)+(1213)+(1314)++(1N1N+1)]S_N = 2 \left[ \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \dots + \left( \frac{1}{N} - \frac{1}{N+1} \right) \right]

This is a telescoping series, where intermediate terms cancel out. SN=2[11N+1]S_N = 2 \left[ 1 - \frac{1}{N+1} \right]

Finally, to find the sum to infinity, we take the limit as NN \to \infty: S=limNSN=limN2[11N+1]S_\infty = \lim_{N \to \infty} S_N = \lim_{N \to \infty} 2 \left[ 1 - \frac{1}{N+1} \right] As NN \to \infty, 1N+1\frac{1}{N+1} approaches 0. S=2[10]=2×1=2S_\infty = 2 \left[ 1 - 0 \right] = 2 \times 1 = 2

The sum to infinity of the series is 2.