Solveeit Logo

Question

Question: 13. The general solution of the equation $\sin 2\theta = \frac{\sqrt{5}-1}{4}$ is...

  1. The general solution of the equation sin2θ=514\sin 2\theta = \frac{\sqrt{5}-1}{4} is
A

θ=nπ2+(1)nπ20,nZ\theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{20}, n \in Z

B

θ=nπ+(1)nπ5,nZ\theta = n\pi + (-1)^n \frac{\pi}{5}, n \in Z

C

θ=2nπ±π10,nZ\theta = 2n\pi \pm \frac{\pi}{10}, n \in Z

D

θ=nπ±π10,nZ\theta = n\pi \pm \frac{\pi}{10}, n \in Z

Answer

(a) θ=nπ2+(1)nπ20,nZ\theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{20}, n \in Z

Explanation

Solution

Given:

sin2θ=514\sin 2\theta = \frac{\sqrt{5}-1}{4}

Recognize that

514=sin18=sin(π10)\frac{\sqrt{5}-1}{4} = \sin 18^\circ = \sin\left(\frac{\pi}{10}\right)

So,

sin2θ=sin(π10)\sin 2\theta = \sin\left(\frac{\pi}{10}\right)

This gives the solutions for 2θ2\theta:

2θ=π10+2πkor2θ=ππ10+2πk,kZ2\theta = \frac{\pi}{10} + 2\pi k \quad \text{or} \quad 2\theta = \pi - \frac{\pi}{10} + 2\pi k, \quad k \in \mathbb{Z}

That is,

2θ=π10+2πkor2θ=9π10+2πk2\theta = \frac{\pi}{10} + 2\pi k \quad \text{or} \quad 2\theta = \frac{9\pi}{10} + 2\pi k

Dividing by 2:

θ=π20+πkorθ=9π20+πk,kZ\theta = \frac{\pi}{20} + \pi k \quad \text{or} \quad \theta = \frac{9\pi}{20} + \pi k, \quad k \in \mathbb{Z}

These can be combined into the compact form:

θ=nπ2+(1)nπ20,nZ\theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{20}, \quad n \in \mathbb{Z}

which is equivalent to option (a).