Solveeit Logo

Question

Question: $\lim_{x \to 2024} \sqrt[1]{(x-2023)^{2023}(x-2024)^{2024}\cdot (x-2025)^{2025}}$...

limx2024(x2023)2023(x2024)2024(x2025)20251\lim_{x \to 2024} \sqrt[1]{(x-2023)^{2023}(x-2024)^{2024}\cdot (x-2025)^{2025}}

Answer

0

Explanation

Solution

The given limit is limx2024(x2023)2023(x2024)2024(x2025)20251\lim_{x \to 2024} \sqrt[1]{(x-2023)^{2023}(x-2024)^{2024}\cdot (x-2025)^{2025}}.

The notation y1\sqrt[1]{y} represents the first root of yy, which is y1/1=yy^{1/1} = y.
So, the expression simplifies to (x2023)2023(x2024)2024(x2025)2025(x-2023)^{2023}(x-2024)^{2024}\cdot (x-2025)^{2025}.

Let f(x)=(x2023)2023(x2024)2024(x2025)2025f(x) = (x-2023)^{2023}(x-2024)^{2024}\cdot (x-2025)^{2025}.
This function is a product of terms of the form (xa)n(x-a)^n, where nn is a positive integer. Such terms are polynomials in xx. The product of polynomials is a polynomial.
Polynomial functions are continuous for all real numbers.
Since f(x)f(x) is a polynomial, it is continuous at x=2024x=2024.
For a continuous function, the limit as xx approaches a point is equal to the function value at that point.
Therefore, limx2024f(x)=f(2024)\lim_{x \to 2024} f(x) = f(2024).

Substitute x=2024x=2024 into the expression for f(x)f(x):
f(2024)=(20242023)2023(20242024)2024(20242025)2025f(2024) = (2024-2023)^{2023}(2024-2024)^{2024}\cdot (2024-2025)^{2025}
f(2024)=(1)2023(0)2024(1)2025f(2024) = (1)^{2023}(0)^{2024}\cdot (-1)^{2025}

Evaluate each term:
(1)2023=1(1)^{2023} = 1
(0)2024=0(0)^{2024} = 0 (since the exponent is positive, 0n=00^n = 0 for n>0n > 0)
(1)2025=1(-1)^{2025} = -1 (since the exponent is odd, (1)n=1(-1)^n = -1 for odd nn)

Now, multiply the results:
f(2024)=10(1)=0f(2024) = 1 \cdot 0 \cdot (-1) = 0.

Thus, the limit of the function as x2024x \to 2024 is 0.