Solveeit Logo

Question

Question: Let $S=\{\theta \in [0,2\pi]: 8^{2\cos^{2}\theta}+8^{2\sin^{2}\theta}=16\}$...

Let S={θ[0,2π]:82cos2θ+82sin2θ=16}S=\{\theta \in [0,2\pi]: 8^{2\cos^{2}\theta}+8^{2\sin^{2}\theta}=16\}

A

0

B

-2

C

-4

D

12

Answer

0

Explanation

Solution

The given equation is 82cos2θ+82sin2θ=168^{2\cos^{2}\theta}+8^{2\sin^{2}\theta}=16. Let x=2cos2θx = 2\cos^2\theta. We know that sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1, so 2sin2θ=2(1cos2θ)=22cos2θ=2x2\sin^2\theta = 2(1-\cos^2\theta) = 2 - 2\cos^2\theta = 2-x. Substitute these into the equation: 8x+82x=168^x + 8^{2-x} = 16. Let y=8xy = 8^x. The equation becomes: y+82y=16y + \frac{8^2}{y} = 16, y+64y=16y + \frac{64}{y} = 16. Multiply by yy (assuming y0y \neq 0, which is true since 8x8^x is always positive): y2+64=16yy^2 + 64 = 16y, y216y+64=0y^2 - 16y + 64 = 0. This is a perfect square trinomial: (y8)2=0(y-8)^2 = 0. So, y=8y=8. Now substitute back y=8xy = 8^x: 8x=88^x = 8. This implies x=1x=1. Substitute back x=2cos2θx = 2\cos^2\theta: 2cos2θ=12\cos^2\theta = 1, cos2θ=12\cos^2\theta = \frac{1}{2}, cosθ=±12\cos\theta = \pm \frac{1}{\sqrt{2}}. We need to find θ[0,2π]\theta \in [0, 2\pi] for which cosθ=±12\cos\theta = \pm \frac{1}{\sqrt{2}}. The values of θ\theta in the interval [0,2π][0, 2\pi] are: 1. When cosθ=12\cos\theta = \frac{1}{\sqrt{2}}: θ=π4\theta = \frac{\pi}{4} (1st quadrant) and θ=7π4\theta = \frac{7\pi}{4} (4th quadrant). 2. When cosθ=12\cos\theta = -\frac{1}{\sqrt{2}}: θ=3π4\theta = \frac{3\pi}{4} (2nd quadrant) and θ=5π4\theta = \frac{5\pi}{4} (3rd quadrant). So, the set S={π4,3π4,5π4,7π4}S = \left\{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\right\}. The question is incomplete, stating "then" and providing integer options. A common type of question in such a scenario is to ask for the sum of values of cos(2θ)\cos(2\theta) for θS\theta \in S. Let's calculate cos(2θ)\cos(2\theta) for each θS\theta \in S. We know cos(2θ)=2cos2θ1\cos(2\theta) = 2\cos^2\theta - 1. Since 2cos2θ=12\cos^2\theta = 1 for all θS\theta \in S, we have: cos(2θ)=11=0\cos(2\theta) = 1 - 1 = 0. Therefore, for every θS\theta \in S, cos(2θ)=0\cos(2\theta) = 0. The sum of cos(2θ)\cos(2\theta) for all θS\theta \in S would be: θScos(2θ)=0+0+0+0=0\sum_{\theta \in S} \cos(2\theta) = 0 + 0 + 0 + 0 = 0. This matches option (1).